

Towards a high-precision luminosity measurement for the 2016 proton-proton data-taking period at $\sqrt{s} = 13 \text{ TeV}$

Joscha Knolle, Rafael Sosa & Oleksii Turkot

Luminosity Measurement

Cross-Detector Stability

 $\underbrace{\frac{\mathrm{d}N}{\mathrm{d}t}}_{\text{event rate}} = \underbrace{\mathcal{L}} \cdot \underbrace{\sigma}_{\text{cross section}}$

measure for collision rate

important input to cross section

measurements

 calibrated with Van der Meer (VdM) method

monitored over full run period

Luminosity Detectors (Luminometers)

Pixel Cluster Counting

Normalization

Cross sections of the luminometers are calibrated in a dedicated VdM fill.

Systematic Uncertainties	
XY correlations	0.9%
Beam current calibration	0.3%
Ghosts and satellites	0.4 %
Length scale	0.8%
Orbit drift	0.4 %
Beam-beam deflection	0.4 %
Dynamic β^{\star}	0.5 %

Integration

The calibrations are extrapolated to physics run conditions and their validity over all of the run period is evaluated.

Systematic Uncertainties	
Internal stability	0.5 %
Cross-detector stability	1.5%
Linearity	0.6 %
Dynamic inefficiency	0.3 %
Afterglow corrections	0.9%
CMS deadtime	0.5 %

XY Correlations

Beam Imaging Method
■ beam imaging scan: one ■ 2D beam shapes recon-

↑ Luminometer Ratios

- HFOC, DT are cross-calibrated to PCC
 ⇒ comparison to identify unstable periods of the detectors
- if only one luminometer disagrees, exclude it from luminosity computation

Reference Ratio ↓

- "best" luminometer: detector with best intrinsic precision that doesn't show bad behaviour in cross-detector comparison
- "second" luminometer: as reference for evaluation of residual instabilities

