

Search for ttH production in the H \rightarrow bb channel with leptonic tf decays in proton-proton collisions at $\sqrt{s}=13 \text{ TeV}$ Andrej Saibel (DESY, Universität Hamburg)

on behalf of the CMS collaboration

Introduction

- ttH: direct access to top-Higgs Yukawa coupling
- H->bb: largest branching ratio

• Lepton requirement: QCD suppression

Reference

CMS Collaboration. Search for $t\bar{t}H$ production in the $H \rightarrow b\overline{b}$ decay channel with leptonic $t\overline{t}$ decays in proton-proton collisions at $\sqrt{s} = 13$ TeV. 2018. CMS-HIG-17-026, arXiv:1804.03682, Subm. to JHEP.

Analysis Strategy

Events

Event Selection

Object Semileptonic Dileptonic

Challenges and Solutions

• $\sigma(t\bar{t}+jets) \approx 1600 \cdot \sigma(t\bar{t}H).$

Leptons e^{\pm} μ^{\pm}	$ \eta < 2.1$ $p_{\rm T} > 30~{ m GeV}$ $p_{\rm T} > 26~{ m GeV}$	$ \eta < 2.4$ $p_{\rm T} > 25(15) {\rm GeV}$ "
Jets	\geq 4, \geq 2 b-tags p_{T} > 30 GeV $ \eta $ < 2.4	$\begin{array}{ c c c } \geq & \geq 2, \geq 1 \text{ b-tags} \\ p_{\text{T}} > & 30(20) \text{ GeV} \\ & & \eta < 2.4 \end{array}$
MET	> 20 GeV	$ > 40 \text{ GeV} (\text{ee}, \mu\mu)$
 b-tagging: Combined Secondary Vertex "> 30(20) GeV": leading(subleading) 		

- Particular challenge: tt+b-jets irreducible background with large modelling uncertainties.
- Jet-b-tag categorization: constrain backgrounds from background rich categories and extract signal strength from signal enriched categories.
- MVA methods for best possible signalbackground discrimination

Multivariate Methods

- Semilepton jet-process categorization: In each of the jet-tag categories, each event gets assigned a probability for being ttH,tt+b-jets,tt+cc, tt+lf and classified according to highest probability by the DNN.
- **Dilepton** channel split into two jet-tag categories. In each category, a dedicated **BDT** used to separate ttH(bb) from background processes.
- **Dilepton** 4jet, 4b-tag category is split further into background- and signal-like subcategories according to BDT output. Matrix Element Method, constructed to separate ttH and tt+bb, is used as final discriminant in each subcategory.

Figure 1: DNN discriminant in jet-process category \geq 6 Jets-ttH-Node (pre-fit).

Figure 2: BDT discriminant in dilepton channel.

Figure 3: Matrix Element Method discriminant in high BDT output category (pre-fit).

Figure 4: Bins of the final discriminants reordered by the pre-fit expected signal-to-background ratio.

• Best fit $\mu = 0.72 \pm 0.24$ (stat) ± 0.38 (syst)

- observed (expected) signifi- 1.6(2.2)σ cance above background-only hypothesis.
- Measurement dominated by systematic uncertainties. Theoretical uncertainties on $t\bar{t}$ +b-jets process by far the largest.
- Experimental uncertainties dominated by flavour tagging and Monte Carlo statistics.

Figure 5: Median expected and observed upper limits on μ . Green and yellow lines indicate regions for 68% and 95% of expected limits under backgroundonly hypothesis.