

Higgs Boson decay to Tau Pairs at the CMS experiment

Somnath Choudhury (for the CMS collaboration) DESY - Hamburg

200 300

Higgs (125)

00000000

0000000

00000000

لوووووووو

500

h, H, A

h, H, A

— H → ττ m_H = 125 GeV

— H → ττ m_μ = 125 GeV

Z → ττ

0.12

0.08

0.04

M_H [GeV]

h, H, A

Motivation

Great achievement to a four decade long quest A Higgs-like state pinned down at 125 GeV mass

> Access to coupling of Higgs field with fermions > Proportionality between mass and coupling in

the fermion sector

Different production mechanisms exploited (gg fusion, VBF and VH) for Standard Model Higgs Boson search

Minimal Super-Symmetric Standard Model (MSSM)

Two isospin Higgs doublets $H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}$ and $H_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$

2 Higgs doublets each with 4 degrees of freedom EW symmetry breaking: 5 physical Higgs bosons

- h, H (scalar, CP-even)
 A (pseudoscalar, CP-odd)
 H[±] (charged)
- \triangleright Coupling bbA $\sim \tan\beta$ (ratio of the vev of the two doublets) at LO
- > Production rate enhanced high tanβ
- Φ (h/H/A) decays to b-quark (~ 90%) and τ (~ 10%) pairs enhanced at all masses MSSM Higgs production and decays significantly affected by radiative corrections to Higgs mass 2 free parameters $(M_A, \tan \beta)$ in MSSM space MSSM predicts low mass Higgs $M_h \lesssim 135 \text{ GeV}$ in the m_h^{max} scenario

The Higgs mass value 125 GeV measured is rather large for the MSSM light h boson Maximizing M_b is maximizing the radiative corrections to Higgs mass at 1-loop level A new MSSM m_h benchmark scenario introduced – m_h^{mod+} consistent with H(125) M. Carena et. al., arXiv:1302.7033 [hep-ph]

SM Higgs Analysis

Mass of τ lepton pair reconstructed via a Likelihood technique:

- τ decay kinematics
- Compatibility of reconstructed E_T^{miss} with neutrino hypotheses

m_{TT} obvious observable to discriminate Z boson from Higgs signal Majority di-tau decay channels use m₊₊ for signal extraction $m_{\tau\tau}$ mass resolution ~ 10 - 20% depending on channel / category

- 0 jet category: constrains background, id efficiencies, energy scales
- 1 jet category: improves the resolution of Higgs mass
- 2 jet category: VBF process high Signal/Background ratio

W + jets : Shape from simulation, normalization from m_T/P_c sideband Z + jets : OS/SS ratio and lepton/jet $\rightarrow \tau$ fakes with shape from simulation

> Top pair and Di-boson from simulation

Higgs – Lepton Coupling

- \Box Excess >3 σ observed over m_H 110–130 GeV
- ☐ Observed (expected) Significance 3.2σ (3.7 σ) for $m_H = 125 \text{ GeV}$
- \square H $\rightarrow \tau \tau$ best fit signal strength 0.78 ± 0.27 for $m_H = 125 \text{ GeV}$
- ☐ Direct Evidence of Higgs-Lepton coupling

MSSM Higgs Search

Decay final states: $\mu + \tau_h$, $e + \tau_h$, $\mu + e$, $\mu\mu$, $\tau_h + \tau_h$

Selected Events analyzed in 2 Categories: b-Tag and non b-Tag (to enhance sensitivity of bbΦ coupling) B-tagging: based on secondary vertex + track-based life-time information

95% CL upper bound on Cross-section x $\mathscr{B}r(\Phi \to \tau \tau)$ based on the mass shape of m_{TT} distribution- mapping m_A -tan β plane (4FS+5FS)

benchmark scenarios)

Uncertainties entering the limit calculation-

- > Theoretical (PDF, factorization)
- ➤ Normalization (Lumi, Efficiencies)
- ➤ Shape (Energy / momentum scale)

This excludes previously unexplored region now reaching as low as $\tan \beta \sim 3.9$ at $m_A = 140 \text{ GeV}$

Summary

- ☐ Higgs Boson @ 125 GeV avenue of great interest in fermion decay modes
- \square Excess > 3 σ observed over m_H 110–130 GeV in di-tau decay consistent with H(125)
- ☐ First Indication of Higgs coupling to Leptons from tau pair decay
- ☐ Properties measurement of Higgs in tau pair decay in Run 2 LHC
- ☐ Robust program of MSSM Higgs Boson searches with the CMS detector \square MSSM Higgs parameters significantly constrained with $H \rightarrow \tau \tau$ (with different MSSM

References

- 1. The CMS Collaboration, JHEP 05 (2014) 104 and all references therein
- 2. The CMS Collaboration, arXiv:1408.3316 [hep-ex] and all references therein