Test Beam Campaigns for the CMS Phase I Upgrade Pixel Readout-Chip.

Simon Spannagel for the DESY CMS Pixel Detector Group 10th International Conference on Position Sensitive Detectors, 7-12/9/2014

CMS Barrel Pixel Detector

The CMS Pixel Readout-Chip

Pixel Unit Cell

- > Smallest logic unit of the Readout-Chip, 256 transistors
- > Contains preamplifier, shaper and comparator
- for zero-suppressed pulse readout
- > Organized in Double Columns for data readout

- > Each module comprises 16 Read-out chips (ROCs) on one Si sensor
- > Programming and data transfer managed by the Token-Bit Manager (TBM) chip

Data Loss Predictions

	Data loss for different luminosities		
Detector & Layer	1x10 ³⁴ cm ⁻² s ⁻¹ 25ns BX	2x10 ³⁴ cm ⁻² s ⁻¹ 25ns BX	2x10 ³⁴ cm ⁻² s ⁻¹ 50ns BX
Current L1	4.0%	16.0%	50.0%
Current L2	1.5%	5.8%	18.2%
Upgraded L1	1.19%	2.38%	4.76%
Upgraded L2	0.23%	0.46%	0.93%

Digital 160MHz Readout & additional on-Chip Buffers

data bus

Low Threshold, **High Position Resolution**

- > In-time threshold (assigned to correct trigger window)
- Current ROC: ~ 3,500 e
- New ROC: < 1,800 e
- > Reduced internal cross-talk from power rails
- > Increased comparator speed
- > Reduced threshold allows better position resolution
- > Also increases detector longevity, compensating for reduced charge collection after irradiation

Detailed ROC/Sensor Studies

t	punch-throug
t	punch-throug

analog PSI46

- > Fully-digital 160 MHz readout for higher bandwidth
- > Replaces analog level-based 40 MHz approach
- > fast on-chip 8-bit ADC for pulse-height sampling

Additional buffer cells

- > Data buffers: 32 cells to 80 cells
- > Time stamp buffers: 12 cells to 24 cells
- > Reduced buffer cell size to stay compatible with old design
- > Reduced dead time during readout by additional global readout buffer

Performance of Irradiated Devices

Dose (Gy) at z=0 Dose (Gy) at z=125

After irradiation:

> Only partially depleted sensor (limits on power dissipation) > *n*-in-*n* implant concept as the sensor undergoes type inversion > Depletion and charge collected at implant side > High resolution, tracking efficiency and charge collection maintained

DESY Testbeam & DATURA Telescope

- > Beam generation via bremsstrahlung and pair production > Energies selectable from 1-6 GeV
- > (Instantaneous) particle rates in the Hz – few kHz range
- > Energy spread of 5%
- > Beam Divergence ~1mrad
- **> Test beam** equipped with beam telescopes > Developed at DESY for test beams worldwide
- > High-precision tracking, low material budget
- > Six MIMOSA26 MAPS, 18.4µm pitch, 50µm thickness, 120µs integration window
- > Mechanical Support, cooling, Trigger Logic Unit (TLU), four-fold coincidence trigger > Full-featured Data Acquisition (DAQ) and analysis system (EUDAQ, EUTelescope)

efficiency map of the DUT

HELMHOLTZ ASSOCIATION