Searches for light- and heavy-flavor three-jet resonances in pp collisions with the CMS detector at $\sqrt{s} = 8 \text{ TeV}$

Claudia Seitz, DESY for the CMS Collaboration

Large Hadron Collider Physics Conference June 2th - 7th, 2014

Abstract

s or b

A search for **three-jet hadronic resonance** production in pp collisions at a center-of-mass energy of 8 TeV using 19.4 fb⁻¹ of data collected by the CMS experiment in 2012 is presented. The search method is model **independent**, and events are selected that have high jet multiplicity and large values of jet transverse momenta.

The results are interpreted in the context of **R-parity-violating** supersymmetric gluino pair production resulting in a six-jet final state, including light- and heavy-flavor jets. The analysis technique is validated with a known standard model particle decaying into three jets, the **top quark**.

Introduction and Strategy

- R-parity violating (RPV) decay of gluinos: gluino + gluino \rightarrow 3j + 3j or 2j + 1b + 2j + 1b
- 20 unique triplets per event from 6 highest p_T jets
- **D** Plot M_{iii} vs . $\Sigma^{3^{Jet}}|p_T|$
 - Correct combination will pile-up along a horizontal line representing the resonance mass
 - Incorrect combinations will lie above the diagonal
- Select the triplet in the event that satisfies the requirement of $M_{iii} < \Sigma^{3^{Jet}} |p_T| - \Delta$

Final Selection and Background

Selection	Inclusive	Heavy-flavor search	
criteria	search	Low mass	High mass
Mass range	400 – 1500 GeV	200 – 600 GeV	600 – 1500 GeV
Jets	At least six jets with $p_T \ge 35$ GeV and $\eta \le 2.5$		
Δ	110 GeV	110 GeV	110 GeV
4 th -jet p _T	110 GeV	80 GeV	110 GeV
6 th -jet p _T	110 GeV	60 GeV	110 GeV
b-tagging	-	≥ 1 b tags in triplet	
Sphericity	0.4	-	0.4

/ ndf = 29.2 / 23

Triplet invariant mass [GeV

- CMS, L = 19.4 fb⁻¹ at \sqrt{s} = 8 TeV Inclusive search $\Delta = 110 \text{ GeV}, 6^{\text{th}} \text{ jet } p_{\perp} \ge 110 \text{ GeV}$ ohericity ≥ 0.4 Background fit directly to the data Signal M_{aluino} = 500 GeV Fit function: P4=a $\frac{(1-x/\sqrt{s}) b}{(x/\sqrt{s})^{c+d \log(x/\sqrt{s})}}$ Signal M_{gluino} = 750 GeV Heavy-flavor search Low mass range
 - Template for tt from simulation

Triplet scalar p₁ [GeV]

- Trigger: at least 6 calorimeter jets $(4^{th}-jet p_T > 60 \text{ GeV}, 6^{th}-jet p_T > 20 \text{ GeV})$ **D** Basic selection: at least 6 anti- k_T Particle Flow jets with R=0.5
 - 4^{th} -jet $p_{T} > 80 \text{ GeV}, 6^{th}$ -jet $p_{T} > 60 \text{ GeV}$

Selection Optimization

The choice of Δ is driven by the goal to access the largest mass range possible, and is chosen to be at 110 GeV. With the diagonal offset determined, the 6^{th} -jet p_{T} and b-tagging selection criteria are applied to maximize signal significance.

$$N_{\text{sig}}^{\text{Triplet}} \Rightarrow \begin{array}{l} \text{Number of triplets in} \\ \text{Gaussian signal peak} \\ N_{\text{Bkg}}^{\text{Triplet}} \end{array} \xrightarrow{} \begin{array}{l} \text{Signal} \\ \text{Significance} \\ \text{Number of triplets in the} \\ \text{data assuming a smoothly falling background distribution} \end{array} \xrightarrow{} \begin{array}{l} \begin{array}{l} \text{Signal} \\ = \\ N_{\text{Sig}}^{\text{Triplet}} \\ \sqrt{N_{\text{Sig}}^{\text{Triplet}} + N_{\text{Bkg}}^{\text{Triplet}}} \end{array}$$

- QCD from data control region
- High mass range
- **Fit directly to the the data**

Results: Limits on hadronic RPV

Physics Letters B **730**, 193 – 214 (2014)