

Measurement of Normalized Differential **Top-Quark Pair Production Cross Sections**

Ivan Asin on behalf of the CMS Collaboration LHCC Poster Session, 2013/03/13 Geneva (Switzerland)

Introduction & Motivation

- Within the Standard Model (SM) the top quark plays an important role:
- same $t\bar{t}$ and Higgs boson production process at the LHC energy regime (gg fusion)
- *t*-quark physics important test of SM
- The LHC 2012 data taking period:
- produced a large number of $t\bar{t}$ events, ~5M
- allows precision measurements of SM
- in a new energy regime $\sqrt{s} = 8$ TeV

The measurement of normalized differential cross section is performed in the I+jets and dilepton decay channels of the *tt* pairs.

Unfolding & Normalized Differential Cross Sections

Why:

- correct the measurement for experimental migrations
- due to the finite resolution of the measurement

Method:

- regularized unfolding
- to **minimize** the global bin-by-bin correlations

Binning selection:

keep migrations into the bins (purity, pⁱ) is above 40-50% in each bin

$$p^i = rac{N^i_{rec\&gen}}{N^i_{rec}} \quad s^i = rac{N^i_{rec\&gen}}{N^i_{gen}}$$

 $1 d\sigma'$

dX

 $\overline{\mathbf{O}}$

Normalized differential cross sections measured in:

- full phase space: *t*-quark and *t* pair properties
- visible phase space: lepton and/or jet properties

Visible Phase Space

Dilepton	/+jets
Leptons	Leptons
• p _τ > 20 GeV	• p _τ > 30 GeV
• η < 2.4	• η < 2.1
b-jets	Jets
• p _τ > 30 GeV	• p _τ > 30 GeV
• η < 2.4	• η < 2.4

<u>년</u> 역¹

tt Event Reconstruction

tt system directly not measurable \rightarrow event reconstruction Input objects: reconstructed *I*, jets and E_{τ}^{Miss}

Dilepton

system underconstrained due to 2 v's

- $E_T^{\text{Miss}} = p_T(v) + p_T(v)$
- ♦ m_w = 80.4 GeV
- \rightarrow m, = m_t = fixed
- m, varied in 1 GeV steps
- in [100, 300] GeV range
- prefer solutions with
- b-tagged jets
- then with most
- probable v spectrum

I+jets

- vary *I*, jet and v 4-momenta
- $E_{T}^{Miss} = p_{T}(v)$
- ♦ m_w = 80.4 GeV
- \bullet m_t = m (qq'b) = m(lvb)
- consider only the 5 leading jets
- b-tagging information used
- for b-jet association
- choose jet permutation that maximizes χ^2 -probability

First CMS differential cross section measurements at $\sqrt{s} = 8$ TeV are shown as function of transverse momentum, (pseudo-)rapidity and invariant mass of the final state lepton, lepton-pair, b-jet, top quark and top-quark-pair system.

Results

Bin-center-correction applied to the measured data points. For comparison with respect the measurement MadGraph, POWHEG, MC@NLO and Approx. NNLO (when available) predictions shown.

CMS Preliminary, 12.2 fb¹ at $\sqrt{s} = 8$ TeV

).7 _[
 Dilepton Combined 	Data	
0.6	— MadGraph _	

CMS Preliminary, 12.2 fb¹ at $\sqrt{s} = 8$ TeV

CMS Preliminary, 12.1 fb¹ at vs = 8 TeV

