
Wolf Behrenhoff, Christoph Wissing (DESY), Bockjoo Kim (University of Florida),
Stijn Blyweert, Jorgen D'Hondt, Joris Maes, Michael Maes, Petra Van Mulders,
Ilaria Villella (Vrije Universiteit Brussel), Lukas Vanelderen (Universiteit Gent)

CMS Computing
Infrastructure

Monitoring Deployment Jobs and Statistics

Packaging of CMSSW

CMSSW on the Grid
The CMS software is deployed to the grid sites centrally unless
requested otherwise. The deployment team takes care of
problems, contacts a site only if needed (e.g. permission errors).
Due to differences in the grid middleware, there are two
deployment teams, one for OSG sites (North and South America)
where installation is done direct installation on the computing
element, and one for gLite and ARC sites (Europe and Asia)
where the installation is done via a Grid job from a worker node.

A monitoring website has been developed to view the status of the
deployment by combining information from SAM tests, from the
BDII and from the deployment job log files. It does not only show
which releases need to be installed or removed on which
computing elements but also provides a convenient access to job
logfiles in case of failed jobs. When looking at logfiles and
searching for problems, the downtimes for the relevant site are
shown (available for T1 and T2 only). In addition, links to relevant
pages in the LCG Savannah system are provided.

Automated Deployment – gLite and ARC

Installing CMS Software (CMSSW)

The different tiers are used for the following purpose:
●Tier 0 – prompt reconstruction, store data and export to T1s
●Tier 1 – Re-reconstruction, long term storage of data
●Tier 2 – MC production, user analysis
●Tier 3 – MC production, user analysis

The removal of CMSSW releases on grid sites is done in several
steps. At first a proposal to deprecate releases is sent to
Hypernews. If there are no objections, the TagCollector is updated
accordingly.

However, removal jobs are not sent immediately. Rather the
published software tags are removed from all CE info providers.
That ensures all running jobs and all jobs which are currently
queued can still finish successfully but no new jobs using the
deprecated releases can be submitted. After 5 days, actual
removal jobs are sent.

The whole removal procedure is implemented in the Job
Generator, i.e. it takes care of the delay between removing the
tags and sending the removal job.

Usually deprecation proposals are sent 2 or 3 times a year,
deprecating a rather long list of releases. Of course, one removal
grid job is sufficient to remove all deprecated releases.

CMSSW on Grid sites

lhapdf (649 MB)
geant4 (333 MB)
thepeg (146 MB)
gcc (129 MB)
xdaq (124 MB)
herwigpp (88 MB)
qt (79 MB)
valgrind (69 MB)
python (67 MB)
oracle (58 MB)
others (633 MB)

Size of a single CMSSW version (3_6_0)
● 5.5 GB of files
● 114,598 files and 4,197 symlinks in 11,115 directories
● 4.8 million lines of code: *.cc: 2.5M, *.h: 1M, *.py: 0.8M
● 2.4 GB externals in 83 packages:

There are different types of CMS software upgrades: patch releases
are small (a few 100 MB) updates to an already installed release,
they usually share all of the external dependencies. Minor releases
share most external software with the previous release while new
major releases come with a lot of new external packages and thus
need almost as much additional disk space as the installation of a
single release from scratch. The CMS collaboration requires sites to
provide 200 GB of disk space for CMSSW. Currently (Oct 2010) the
size of all production releases amounts to a total of 60 GB.

Packaging using rpm and apt-get
CMS software and required external libraries are provided in
packages in the RPM format to allow for easy handling of
dependencies using the Advanced Packaging Tool (apt).

No stand-alone grid jobs
Because the CMS software is large and monolithically packaged,
each CMS computing centre needs its own software installation. It is
not feasible to create stand-alone grid jobs which contain a
complete CMSSW installation.

General
Installation of CMSSW is done in two steps: the bootstrap which needs to be done once per architecture and the actual installation of the CMS
Software which needs to be repeated for every version of the software. The whole process needs to be run under a normal user account.

Bootstrap
The bootstrap script must be run first. It creates the directory structure for a given architecture (OS and compiler version, 32/64 bit) and creates
a CMS internal RPM database. CMSSW has some system dependencies – the bootstrap collects information about installed packages of the
operating system and creates system-base-import.rpm which provides these dependencies. This RPM file is then installed in the CMS RPM
database. The bootstrap also installs a few basic packages such as apt-get.

Installing and removing CMSSW releases
After the bootstrap CMSSW releases can be installed. This is done by setting up the environment so that the CMS apt-get and the CMS rpm
database is used. The final step is to run apt-get and let it install a certain CMSSW release including all dependencies.

Removing a CMSSW release is done using a remove script which takes care of all dependencies. The CMSSW release to uninstall and
dependent packages which are not required by any other main CMSSW release are removed.

Deployment of the CMS Software
on the WLCG Grid.

The deployment framework is built around a central grid job generator (yellow). If called, it can figure out automatically which installation jobs
need to be sent to which computing element (CE). It receives a manually maintained list of CEs, and checks the status of the CE. An
installation job is sent only if no other installation job is running and if the CE is not in maintenance and if a previous job was successful.

The job generator then compares the list of available production releases from the TagCollector with the list of installed releases on the CE. If
the lists are different, it sends a grid job to install missing releases or to remove deprecated releases.

Job generator

What to install?

TagCollector:
XML list of CMSSW
production releases

Software tags:
list of published

releases

SAM tests:
list of installed

releases

consistency
check

Create and submit jobs

Fetch job output

Where to install?

Logfiles; sqlite db

status of CE
(ok, maintenance)

List of CEs

Previous job
successful /

error cleared?

called manually:
$ ri -fs

All centers need CMS software!

The tiered CMS computing infrastructure is distributed among more
than 50 compute centres in 22 countries.

Tier 0 Tier 1 Tier 2 Tier 3Tier 0Tier 0

OS root
i.e. /

CMSSW directory
e.g. /home/cmssw

Architecture directory
e.g. /home/cmssw/slc5_ia32_gcc434 /var/lib/rpm

system-base-import.rpm
created in bootstrap to seed
RPM database

common CMS externals, e.g.
gcc, db4, libxml2, openssl

apt-get, rpm own RPM
database

other architecture(s)

installed
software

on the OS

system RPM
database

non-CMS externals
(glibc, ncurses, readline,
XFree86-Mesa-libGL, ...)

fail if they are
not installed

time

usually +/- one week until final decision

5 days

next time the job generator is executed

CMSSW Removal
Procedure

Fileserver
NFS, AFS, ...

CMSSW
installed on
file server

CMSSW mounted in $VO_CMS_SW_DIR
Can be read by any VO member

Write access requires VOMS Role=lcgadmin

Gatekeeper:
• checks user certificate
• VOMS role dependent

mapping

se
nd

 jo
b

to
 W

N

CE info provider:
publishes installed
software (tags)

connected via
a network file

 system such as
AFS, NFS, or Lustre

(1) Deprecation proposal in Hypernews

(2) Deprecation announcement, TagCollector updated

(3) Removal of software tags, no new jobs accepted

(4) Send jobs for uninstallation

Manual additions to the automated system
● List of CEs: There is no reliable way to determine the list of centrally managed CEs. Some sites don't want central installation, sometimes

“test CEs” exist, entries in the CMS SiteDB might be out of date, …
● List of releases: While the list of production releases is available, some sites additionally request certain releases to be installed. So a list of

additions is maintained.

Special use cases for the Job Generator
In case of problems or certain special site requests, it can be required to send jobs manually. The job generator supports to send user-defined
shell scripts as well as installation and removal requests.

Special site setups
The fileserver can be shared among multiple worker
node clusters of the same site.
Some sites with multiple file servers and/or multiple
worker node clusters share published tags, others don't.

Object Oriented
Deployment Framework

Usage examples - CMSSWInstall:
Bootstrap a new CMSSW area (if not already done) and install a
CMSSW release:
$sw = CMSSWInstall->new(“arch”, “path”);
$sw->install(“CMS_version”);

Correct environment variables, common pitfalls (e.g. fakesystem
packages, NFS locking problems) are handled automatically and are
hidden from the interface.

Usage example - LcgCE:
$ce = LcgCE->new(“grid-ce4.desy.de”);
say “Latest swinst test ”. localtime $ce->samTime();

Many CE specific functions such as reading the swinst SAM test,
reading and setting software tags via lcg-tags and lcg-info, getting the
tier and sitename are implemented.

Usage example - JDL:
Submit a file test.sh to a CE, wait for job to finish and display stdout.
$j = JDL->new(); $j->addExecutable(“test.sh”);
$j->setRequirement(“...”); $jdl->submit();
sleep 30 while !$j->finished();
$j->retrieveOutput(); say $j->getStdOut();

MonALISA reporting can be switched on with a single method call.

LcgCE

Computing Element
specific functions

CMSSWInstall

Manage CMSSW
installations

JDL

Grid job
submission

The deployment framework is written in well-documented, object
oriented Perl code. It consists of 8 classes and several thousand lines
of code.

The framework is used for the deployment and for various monitoring
web sites.

Install Automation/Grid
Portal for OSG Sites

Frontend
Backend

OSG Client/Condor-G

Remove

Completion Notification

E-mail request CRON

MySQL
Site Info

Undo Remove

Install

Verify

Undo Install

Undo Verify

CGI Portal

CMSSW Software Release

06
.0

1.

07
.0

2.

31
.0

3.

21
.0

5.

09
.0

7.

17
.0

8.

01
.1

0.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Other jobs
Generator Packs
Failed removal jobs
Successful removal jobs
Failed installation jobs
Successful installation
jobs

Total number of CMSSW
(un-)installations since January 2010

job queued for
about 4 hours

the first deploy-
ment job failed,
resubmitted job
was successful

Most jobs have finished
successfully in less

than 30 minutes

Deployment progress of CMSSW_3_8_4_patch3
blue: job queued; green: installation job running

Only gLite/ARC sites are
shown in this plot.
Performance for deployment
on OSG sites is similar.

Recent deployment experience
Deployment of a newly released CMSSW version usually takes from
about half an hour for patch releases up to about 5 hours for full
releases for most of the grid sites. Delays up to a few days can be
caused by long queues and more importantly by sites in downtime
and by errors during the installation.

This year there were about 80 deployment rounds, they run largely
unattended. Only a few operator interventions per week are required
in case of problems.

Monitoring deployment status

	Folie 1

