Search for dark matter production at ATLAS and CMS

Alexander Grohsjean

on behalf of the ATLAS and CMS Collaborations

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

La Thuile 2018 XXXII Les Rencontres de Physique de la Vallée d'Aoste

The Dark Matter puzzle

The Dark Matter puzzle

The LHC - A modern Prometheus ?

Dark Matter searches in a nutshell

comprehensive DM research program at LHC

SM particles in CMS

geometry allows distinguishing various particles

DM particles in CMS

DM fingerprint

transverse momentum imbalance

Phenomenology of DM

by Tim Tait (simplified)

simplified models to guide analysis strategy

Simplified DM models

- idea:
 - restrict to relevant aspects aiming at maximal experimental coverage
- ingredients beyond SM:
 - mediator
 - DM particle
- free parameters:
 - masses, spins, coupling structure and strength
- recasting results in full models:
 - caveats may apply
 - parameter scans manageable

well established since 2015 for LHC searches

Overview of LHC DM searches

- hard QCD ISR jet recoils against DM \rightarrow large cross section
- explore missing transverse momentum as sensitive observable: reaching down to 250 GeV (trigger thresholds)
- key requirements
 - central jet with high momentum above 100 GeV
 - lepton, photon and b jet veto in signal region
 - suppression of large jet mis-measurements: $\Delta \phi$ (jet_{i=1..4}, MET) > 0.5

• major backgrounds from $Z \rightarrow vv$ (60%) and $W \rightarrow lv$ (30%)

constrained from global fit to p_T^{miss} in signal (SR) and control regions (CR)

• major backgrounds from $Z \rightarrow vv$ (60%) and $W \rightarrow lv$ (30%)

constrained from global fit to p_T^{miss} in signal (SR) and control regions (CR)

- take hadronic recoil as proxy for p_T^{miss} in CR
- bin-by-bin transfer factors linking yields in SR and CR
- 20%-40% reduced systematics
 - p_T dependent NLO QCD K-factors from MG5_aMC@NLO
 - electroweak corrections from theory calculation (arXiv:1705.04664)

• major backgrounds from $Z \rightarrow vv$ (60%) and $W \rightarrow lv$ (30%)

constrained from global fit to p_T^{miss} in signal (SR) and control regions (CR)

- take hadronic recoil as proxy for p_T^{miss} in CR
- bin-by-bin transfer factors linking yields in SR and CR
- 20%-40% reduced systematics

35.9 fb⁻¹ (13 TeV)

major backgrounds from $Z \rightarrow vv$ (60%) and $W \rightarrow lv$ (30%)

constrained from global fit to p_{τ}^{miss} in signal (SR) and control regions (CR)

- take hadronic recoil as proxy for p_{T}^{miss} in CR
- bin-by-bin transfer factors linking yields in SR and CR
- 20%-40% reduced systematics

no significant deviation from SM background

arXiv:1712.02345

Extension to hadronic V

- DM recoils against hadronically decaying Z or W
 - large Lorentz-boost: decay products merge in single fat jet
- particularly interesting: Higgs-strahlung with scalar mediator
 - ISR Z/W production always smaller than mono-jet
- Z/W/tt background scale estimated from CR
- main uncertainty from modeling fat jet

Extension to hadronic V

- DM recoils against hadronically decaying Z or W
 - large Lorentz-boost: decay products merge in single fat jet
- particularly interesting: Higgs-strahlung with scalar mediator
 - ISR Z/W production always smaller than mono-jet
- Z/W/tt background scale estimated from CR
- main uncertainty from modeling fat jet

- major backgrounds (Z→vv)+γ (55%) and (W→lv)+γ (15%) from (Z→II)+γ and (W→µv)+γ CR where E_T^{miss} includes corresponding charged lepton
- difficult (but subdominant) instrumental backgrounds
 - ete (ele etrere e felvirer, rele etere e estimente el freme elete
 - jets/electrons faking photons estimated from data

good match of data to background-only prediction

DM recoils against a photon from QED ISR

clean signal, but $\alpha_{QED} < \alpha_{QCD}$

Mono-(Z→II) searches

 DM recoils against a Z boson from electroweak ISR

dilepton trigger give access to low missing momentum

- very clean backgrounds of mainly ZZ (60%) and WZ (25%) from 4 resp. 3 lepton CR
- non-resonant background (e.g. tt, tW, WW) from electron-muon enriched data sample

no excess over SM background

- favored if couplings Yukawa-like
 - high sensitivity to (pseudo)scalar mediators
- optimize selection according to different experimental signatures
- dominant backgrounds of tt, tt+Z and Z+jets

constrained from several CR

Interpretation of results

- presented analysis found data compatible with background-only expectation
- use results to set limits on simplified models
 - resonant enhancement when mediator produced on-shell (s-channel)
 - limits suppressed when going off-shell
 - cross section (sensitivity) drops at high mediator mass
- Iimits depend on assumptions
 - mediator type
 - coupling strength

• ...

use simplified models to interpret DM searches

Strongest limits on (axial)vector mediators

- mono-jet channel most sensitive
 - exclude mediator masses up to ~1.8 TeV and DM masses up to ~700/500 GeV
 - similar sensitivity for ATLAS and CMS

need much more luminosity to improve results

Strongest limits on (pseudo)scalar mediators

- heavy flavor searches allow excluding scalar mediator masses up to ~120 GeV
 - can reach increased sensitivity by combining all tt final states
- mono-jet searches most sensitive to pseudoscalar mediators
 - exclude masses up to ~400 GeV

Visible mediator searches

dark matter searches can be constrained

by visible mediator decays

probe region where mediator cannot decay to DM

- \overline{q} Z \overline{q} \overline{q} \overline{q} \overline{q} \overline{q}
- search for a bump in dijet or dilepton invariant mass spectrum
 - coupling choices determine interplay between DM and resonance searches
 - for e.g. $g_q=0.25$ and $g_l=0$ mediator masses down to ~50 GeV

(CMS, JHEP 01 (2018) 097) and up to 2.5 TeV can be excluded

- simplified models allow unambiguous comparison in the WIMP-DM cross section versus DM mass plane
- advantage:
 - visualizes the complementarity of collider and other DM searches
- disadvantage:
 - comparison model-dependent
 - oversimplification can lead to misinterpretation

use simplified models to compare different results

Translation to direct-detection plane

- nice complementarity between LHC and direct detection experiments
 - LHC searches more sensitive to low DM masses

Translation to direct-detection plane

- nice complementarity between LHC and direct detection experiments
 - LHC searches more sensitive to low DM masses
 - axialvector couplings

Extensions of simplified models: mono-top

- DM recoils against a single top quark
 - flavor-changing simplified model or
 - colored, charged scalar
- explore hadronically decaying boosted top quarks

- BDT discriminating fat jets from top vs quark/gluon initiated
- extract signal strength from fit to p_T^{miss} in 2 BDT bins

Extensions of simplified models: mono-top

Extended scalar models: $H \rightarrow \gamma \gamma / H \rightarrow b \overline{b}$ searches

- DM recoils against a Higgs boson
- need to boost production cross section
 with dedicated models (eg. Z'-2HDM)
 - Higgs initial state radiation tiny
- H(→γγ):
 - excellent mass resolution (<2%)
 - use p_T^{miss} inside Higgs mass window

Extended scalar models: $H \rightarrow \gamma \gamma / H \rightarrow b\overline{b}$ searches

- DM recoils against a Higgs boson
- need to boost production cross section
 with dedicated models (eg. Z'-2HDM)
 - Higgs initial state radiation tiny
- H(→γγ):
 - excellent mass resolution (<2%)
 - use p_T^{miss} inside Higgs mass window
- ♦ H(→bb):
 - largest branching fraction (~60%) but poor mass resolution (~10%)
 - explore resolved m_{bb}/merged m_J in

4 different p_T^{miss} bins

Extended scalar models: $H \rightarrow \gamma \gamma / H \rightarrow b \overline{b}$ searches

- DM recoils against a Higgs boson
- need to boost production cross section
 with dedicated models (eg. Z'-2HDM)
 - Higgs initial state radiation tiny
- H(→γγ):
 - excellent mass resolution (<2%)
 - use p_T^{miss} inside Higgs mass window
- H(→bb):
 - largest branching fraction (~60%) but poor mass resolution (~10%)
 - explore resolved $m_{b\overline{b}}$ /merged m_{J} in

4 different $p_{\rm T}^{\rm miss}$ bins

exclude Z' up to ~2.5 TeV for pseudoscalar of 300 GeV

- manifold DM program at ATLAS and CMS
 - missing transverse momentum signatures and visible mediator searches
 - completed by rich SUSY research program providing natural DM candidate in a UV complete theory
 - complementarity to direct and indirect searches
- LHC Run-II going full speed
 - factor 3 more collisions to analyze during LHC Run-II
- many developments, e.g.
 - more realism/complexity in scalar sector (extra scalar with H mixing)
 - include scenarios with longlived particles

The LHC - A modern Prometheus ?

not yet ...