Highlights from Higgs Physics at CMS

Chayanit Asawatangtrakuldee (DESY) on behalf of the CMS Collaboration

DPG2018 19-23 March 2018, Würzburg (Germany)

Introduction

- The Standard model (SM) of particle physics explains a wide variety of microscopic phenomena in a unified framework (Quantum Field Theory)
 - matters consist of quarks and leptons
 - interaction between particles governed by gauge bosons
- The Higgs mechanism is responsible for assigning mass to particles
 - Higgs boson is an evidence of the Higgs field
- * A main goal of the LHC is the in-depth investigation of electroweak symmetry breaking
- ★ A SM-like Higgs boson = H(125) was discovered by ATLAS and CMS experiments of the LHC in 2012

Standard Model of Elementary Particles

Introduction

- \star 6 years after the discovery, the story continues
 - precise measurements of properties
 - mass, couplings/cross-section
 - discover other Higgs decay channels and production modes
 - $H \rightarrow \tau \tau$, $H \rightarrow bb$, ttH production
 - rare processes : $H \rightarrow \mu \mu$, $H \rightarrow$ invisible
 - search for Higgs bosons beyond the SM
- ★ This talk will focus on the latest results available with the full 2016 data (L ~ 36 fb⁻¹)
 - properties of H(125)
 - BSM Higgs searches

PRD 89 (2014) 092007

Compact Muon Solenoid (CMS)

- 5 years of data taking and being analyzed
 - ★ 2011 at 7 TeV, L ~ 5 fb⁻¹
 - ★ 2012 at 8 TeV, L ~ 20 fb⁻¹
 - ★ 2015 at 13 TeV, L ~ 3 fb⁻¹
 - ★ 2016 at 13 TeV, L ~ 36 fb⁻¹
 - ★ 2017 at 13 TeV, L ~ 42 fb⁻¹

 \star One of two large general purpose detectors of the LHC

- \star Smaller in dimension than ATLAS, but heavier
 - CMS: I5m diameter, 20m length, I2500 tons
 - ATLAS : 22m diameter, 46m length, 7000 tons

CMS Integrated Luminosity, pp

Runl

Run2

Higgs Production at LHC

Higgs Decay

* Most of the H(125) decays accessible at the LHC

5 main production processes x 6 decay modes =30 exclusive final states contributed to H(125)

$H \rightarrow ZZ \& H \rightarrow \gamma \gamma$

 \star Measurement of mass of H(125) decaying to 4 leptons and diphoton channels

sensitivity enhanced by event categorizations

mass ($H \rightarrow ZZ$) : $m_H = 125.26 \pm 0.20$ stat. ± 0.08 syst. GeV 12% more precise compared to Run1 ATLAS+CMS combination

JHEP 11 (2017) 047

CMS PAS HIG-16-040

CMS PAS HIG-17-015

PLB 779 (2018) 283

$H \rightarrow \tau \tau$

- ★ Second largest branching ratio (~6.3%) among fermionic decay channel
 - lower background compare to bb
- * 4 most sensitive channels (eµ, e τ_h , $\mu\tau_h$, $\tau_h\tau_h$) x 3 event categories (0-, 1-, 2-jets)
 - ${\scriptstyle \bullet }$ targeting ggH and VBF processes
- ★ Clear excess at m_{H} =125 GeV

\star First observation of $H \rightarrow \tau \tau$ from single experiment

 4.9σ (4.7σ expected) 5.9 σ combined with CMS Run I

 ★ Signal strength µ (the ratio of the measured Higgs boson rate to its SM prediction) is compatible with SM

```
\mu = 0.98 \pm 0.18 (Run I+Run 2)
```

arXiv:1709.07497

$\mathsf{VH} \mathsf{H} \rightarrow \mathsf{bb}$

- Dominant decay mode (~58%) in SM, but not yet discovered due to large background
 recoiling against W/Z boson is advantageous
- ★ 3 channels (0-, I-, 2- leptons) from $W/Z \rightarrow \ell \ell, \ell \nu, \nu \nu$
- ★ Multivariate regression to improve mass resolution
- \star Signal extraction using multivariate analysis technique

Evidence of $H \rightarrow bb$ which can lead to the discovery!

Data used	Significance	Significance	Signal strength
	expected	observed	observed
Run 1	2.5	2.1	$0.89\substack{+0.44 \\ -0.42}$
Run 2	2.8	3.3	$1.19\substack{+0.40 \\ -0.38}$
Combined	3.8	3.8	$1.06\substack{+0.31 \\ -0.29}$

21 March 2018

PRL 120 (2018) 071802

Boosted $H \rightarrow bb$

- ★ Studying H→bb in inclusive production (without W/Z boson) was usually considered impossible due to overwhelming QCD background
- ★ New idea introduced in "boosted topology"
 - boosted $H \rightarrow bb$ candidate recoiling against ISR jet
 - dedicated jet substructure techniques to tag large-radius jets containing two b quarks

- ★ A respectable sensitivity for H→bb in a brand new regime of ggH with p_T > 450 GeV using promising method
- ★ Clear observation of resonant $Z \rightarrow bb$ signal

significance 5.1 σ (5.8 σ expected)

	Η	H no $p_{\rm T}$ corr.	Ζ
Observed signal strength	$2.3^{+1.8}_{-1.6}$	$3.2^{+2.2}_{-2.0}$	$0.78\substack{+0.23 \\ -0.19}$
Expected UL signal strength	< 3.3	< 4.1	
Observed UL signal strength	< 5.8	< 7.2	
Expected significance	0.7σ	0.5σ	5.8σ
Observed significance	1.5 <i>0</i>	1.6σ	5.1σ

CMS PAS HIG-17-026

ttH H→bb (leptonic)

- Direct probe of the top-Higgs Yukawa couplings \star
 - cross section increased by a factor of 3.9 in Run2
 - gain from largest $BR(H \rightarrow bb)$
- \star At least one lepton from top decay \rightarrow higher purity
- Complex final states require more sophisticated methods • 3 different multivariate analysis techniques
- Limited by tt+HF and b-tagging uncertainties

Best-fit $\mu = 0.72 \pm 0.45$ significance 1.6σ (2.2 σ expected)

semileptonic ttH diagram

ttH H→bb (hadronic)

- Hadronic top decay \rightarrow higher rate (46%) but more challenging \star
 - $\bullet \geq 7$ jets in an event requires dedicated all-jet triggers
 - fully reconstructed final state to the Higgs candidate
- Enhanced quark-jet final states by quark-gluon jet discriminant \star
 - reduce QCD multijet background
- Two levels of multivariate methods to separate signal and background
- Provided supplementary sensitivity to the \star overall search for ttH production

Best-fit μ = 0.9 ± 1.5,

upper observed limit μ < 3.8 at 95% CL

21 March 2018

fully hadronic ttH diagram

 \mathbf{g} 000000

12

CMS PAS HIG-17-022

ttH Summary

- ★ A variety of final states, studied with different experimental techniques:
 - tt + b-jets: large branching ratio, but complex multijet final state
 - tt + leptons (H \rightarrow WW, ZZ, $\tau\tau$): lower rate, low SM backgrounds
 - tt + $\gamma\gamma$, 4 ℓ : small branching ratio, but very clean final state

decay mode	best fit µ	significance	
Η→γγ	2.2 (+0.9/-0.8)	3.3σ (1.6σ exp.)	
H→WW, ZZ, ττ	I.23 (+0.45/-0.43)	3.2σ (2.8σ exp.)	
H→bb, 0ℓ	0.9 (+1.5/-1.5)	0.6σ (0.7σ exp.)	
H→bb, I <i>ℓ</i> + 2ℓ	0.72 (+0.45/-0.45)	Ι.6σ (2.2σ ехр.)	

1

 The ttH combination is not yet available but all above channels enter the combination of couplings measurement (slide 15-16)

CMS PAS HIG-17-019

Rare $H \rightarrow \mu \mu$

- * Probe of H(125) couplings to 2^{nd} generation of leptons
 - very low BR (~0.02%)
 - beneficial from excellent dimuon mass resolution
- \star No significant excess is observed
 - 95% CL upper limit on the signal strength

Run I + Run 2 : best-fit μ = 0.9 ± 1.0 significance of 0.98 σ (1.09 σ expected)

CMS PAS HIG-17-031

H(125) Combination

- * Cover a wide range of H(125) measurements using the full 2016 data
 - combined analysis sensitive to 22 out of 25 possible production x decay channels
- \star Signal strengths for the production and decay are compatible with SM expectations

NEW

CMS PAS HIG-17-031 Couplings of H(125)

- \star In κ-framework, κ represents the deviations from SM predictions of the Higgs boson couplings to SM bosons and fermions
- ★ By allowing BR($H \rightarrow BSM$) to vary in the fit, indirect constraints on Higgs couplings to invisible and undetected particles can be obtained
- ★ H(125) still looks SM-like up to now

NEW

CMS PAS HIG-17-023

H→invisible

- Direct searches performed in channels where H(125) recoils against visible system
 monojet (ggH), 2-jets (VBF and VH), 2-leptons (ZH)
- ★ The SM expectation $(H \rightarrow ZZ \rightarrow 4\nu)$ is essentially zero \rightarrow a sign of new physics
- * No significant deviations from the SM expectations are observed
 - 95% CL upper limits on σ_{xBR} relative to SM production is estimated
- ★ Interpretation in the context of Higgs-Dark matter model (backup)

CMS PAS HIG-17-020

h, H, A

٥٥٥٥٥٥٥٥

0000000

g

b association

Extended Higgs Sectors

gluon fusion

g

0000000

h, H, A

- ★ Search for additional neutral Higgs bosons in the ditau final state
 - focus on Minimal Supersymmetric Standard Model (MSSM)
- ★ 4 most sensitive channels : $e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$ (τ_h = hadronic tau)
- ★ 2 categories for two production modes
- \star No excess is observed

CMS PAS HIG-16-018

35.7 fb⁻¹ (13 TeV)

Data Backgroun

dijet invariant mass

1200

1400

1600

1 std. deviatio

CMS Preliminary

Events / 15 GeV

Data-Bkg. √Bkg.

10⁴

 10^{2}

10

200

400

800

600

1000

Extended Higgs Sectors

- \star Search for additional neutral Higgs bosons in the bottom quarks final state
 - only possible with dedicated triggers requiring b-jets
- ★ Sensitivity enhanced with b-associated production
- ★ CMS analysis is unique at the LHC so far
- ★ No evidence for a signal is found
- ★ Interpretation in the context of MSSM and 2HDM

21 March 2018

Summary

- ★ CMS has a broad program of Higgs boson related searches since Run I and continuing in Run2
- ★ Using the first Run2 data (~36 fb⁻¹), everything is more precise
 - improved sensitivity of couplings and properties
 - refinement of methods
- More Run2 data (2017+2018) to be analyzed and included
 watch this space!
- ★ CMS Publications : <u>http://cms-results.web.cern.ch/cms-results/public-</u> results/publications/HIG/index.html

PRL 114 (2015) 191803

Runl Legacy

★ The combination based on the discovery channels $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4\ell$

 $m_H = 125.09 \pm 0.24 (\pm 0.21 \text{ stat.} \pm 0.11 \text{ syst.}) \text{ GeV}$

JHEP 08 (2016) 045

Run Legacy

The combination based on 5 production processes and 6 decay modes \star

signal strength $\mu = \sigma \cdot BR / \sigma_{SM} \cdot BR_{SM}$

- * Production and decays are compatible with SM Higgs : global $\mu = 1.09 \pm 0.11$
- **Couplings** compatible with SM < 2σ \star
- No hint of BSM particles in the loop (ggH, $H \rightarrow \gamma \gamma$), BR_{BSM} < 0.34 at 95% CL \star

JHEP II (2017) 047

 $H \rightarrow ZZ \rightarrow 4\ell$

★ Signal strength on each production mode, integrated fiducial and differential cross sections of H(125)

$H \rightarrow \gamma \gamma$

CMS PAS HIG-16-040 CMS PAS HIG-17-015

- ★ Events are classified according to mass resolution and S/B in the VBF, VH, ttH and gluon fusion categories
 - standard preselection $p_{TI}/m_{\gamma\gamma} > 0.33$, $p_{T2}/m_{\gamma\gamma} > 0.25$, 100 < $m_{\gamma\gamma} < 180$ GeV
- ★ A likelihood scan of the signal strength is performed, profiling all other nuisances including the Higgs mass
- ★ Cross section ratios measured for each process (black points) in the Higgs Simplified Template Cross Section framework

$H \rightarrow \gamma \gamma$

CMS PAS HIG-16-040 CMS PAS HIG-17-015

21 March 2018

CMS PAS HIG-16-042

$H \rightarrow WW \rightarrow 2\ell^2 v$

- ★ The first observation above 5σ from H→WW channel (eµ, ee, µµ) at CMS
 - combining ggH, VBF, ZH and WH productions
- \star Signal strength shows compatibility with the SM predictions
 - \bullet some deviation observed in 2-jetVH-tagged category (hadronic decay of W/Z)

★ Main systematic uncertainties from lepton ID, luminosity and background rates

CMS PAS HIG-16-042

$H \rightarrow WW \rightarrow 2\ell 2\nu$

- ★ A summary of the expected fraction of different signal production modes in each category
- ★ A similar simultaneous fit has been performed to measure the cross section ratios corresponding to five Higgs boson production mechanisms, using a simplified fiducial phase space, as specified in the "stage-0" STXS framework
- ★ Additional simultaneous fits are performed to probe the Higgs boson couplings to fermions and vector bosons
 - $\mu_F \rightarrow$ signal strength associated to ggH, bbH, ttH
 - $\mu_V \rightarrow$ signal strentgth associated to VBF,VH

См раз ніс-17-023 Combination H→invisible

★ BR(H→invisible) translated into DM-nucleon spin-independent cross section limits as a function of DM mass (if DM mass < m_h/2)*

- ★ Assuming scalar, fermion dark matters
- ★ 90% CL to compare with direct detection experiments
- ★ CMS limits complementary to direct detection experiments

ttHH→bb (leptonic)

21 March 2018

NEW

CMS PAS HIG-17-031 H(125) Combination

★ Constraints on benchmark BSM which contains a second Higgs doublet (2HDM)

21 March 2018

CMS PAS HIG-17-020

MSSM $H \rightarrow \tau \tau$

- ★ 95% confidence level (CL) upper limits are set on the product of the cross section and branching fraction
- ★ Differences in the sensitivity of the analysis only occur at low masses, where the p_T of the Higgs boson significantly contributes to the p_T of its decay products
 - the expected limit using either only the b quark or only the t quark for the modeling of the Higgs boson p_T spectrum

