#### On the trail of dark matter by use of simplified models at CMS

Michael Dürr, Alexander Grohsjean, Kai Schmidt-Hoberg, Christian Schwanenberger, Nicole Stefanov

DPG-Frühjahrstagung Würzburg, 20th March 2018











#### Outline

- Weakly Interacting Massive Particle hypothesis
- Search at LHC possible



Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 2/16

- Weakly Interacting Massive Particle hypothesis
- Search at LHC possible



Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 2/16



## Search by use of simplified DM models



#### Framework

- DM Dirac fermions
- (pseudo-) scalar  $\Phi$
- Four parameters for description needed:  $g_q, g_{DM}, m_\chi, m_\Phi$

Direct recoil of DM against SM particles

#### Motivation

- Yukawa-like coupling
  - $\Rightarrow$  strongest coupling to heaviest quark (= top quark)
- test nature of mediator





## Search by use of simplified DM models



Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 4/16

## Kinematic reconstruction

#### Sonnenschein's approach

Unknown: neutrinos' 4-momentum

 $\Rightarrow 6 \text{ unknown variables} \\ \Rightarrow 6 \text{ constraints needed}$ 

**5.**  $E_{T,x}^{miss} = p_{\nu_x} + p_{\bar{\nu}_x}$  & **6.**  $E_{T,y}^{miss} = p_{\nu_y} + p_{\bar{\nu}_y}$ 

arXiv:0603011v3



 $\Rightarrow$  results in a polynomial of  $p_{
u_{\mathrm{x}}} o$  in total max. 4 solutions

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 5/16



 $\Rightarrow$  Splitting decay chain of top quark event into two steps t  $\rightarrow$  W b  $\,$  and  $\,$  W  $\rightarrow$  l  $\nu$ 

$$E_{t} = \underbrace{E_{b} + E_{W}}_{step1} = E_{b} + \underbrace{E_{l} + E_{\nu}}_{step2} \quad \& \quad \vec{p}_{t} = \vec{p}_{b} + \vec{p}_{W} = \vec{p}_{b} + \vec{p}_{l} + \vec{p}_{\nu}$$



Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 6/16

 $\Rightarrow$  Splitting decay chain of top quark event into two steps t  $\rightarrow$  W b  $\,$  and  $\,$  W  $\rightarrow$  l  $\nu$ 

$$E_{t} = \underbrace{E_{b} + E_{W}}_{step1} = E_{b} + \underbrace{E_{l} + E_{\nu}}_{step2} \qquad \& \quad \vec{p}_{t} = \vec{p}_{b} + \vec{p}_{W} = \vec{p}_{b} + \vec{p}_{l} + \vec{p}_{\nu}$$
$$m_{t}^{2} = E_{t}^{2} - \vec{p}_{t}^{2} = (E_{b} + E_{W})^{2} - (\vec{p}_{b} + \vec{p}_{W})^{2} \qquad \sum_{\tilde{z}, \tilde{z}'}$$

$$= m_b^2 + m_W^2 + 2E_b \cdot E_W - 2p_b \cdot p_W \cos \theta_{bW}$$

•  $\vec{p}_W$  restricted to ellipsoid's surface





Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 6/16

 $\Rightarrow$  Splitting decay chain of top quark event into two steps t  $\rightarrow$  W b  $\,$  and  $\,$  W  $\rightarrow$  l  $\nu$ 

$$E_{t} = \underbrace{E_{b} + E_{W}}_{step1} = E_{b} + \underbrace{E_{l} + E_{\nu}}_{step2} \quad \& \quad \vec{p}_{t} = \vec{p}_{b} + \vec{p}_{W} = \vec{p}_{b} + \vec{p}_{l} + \vec{p}_{\nu}$$
$$m_{t}^{2} = E_{t}^{2} - \vec{p}_{t}^{2} = (E_{b} + E_{W})^{2} - (\vec{p}_{b} + \vec{p}_{W})^{2} \qquad \underbrace{\hat{z}_{j}}_{\tilde{z}'}$$

 $= m_b^2 + m_W^2 + 2E_b \cdot E_W - 2p_b \cdot p_W \cos \theta_{bW}$ 

•  $\vec{p}_W$  restricted to ellipsoid's surface

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 6/16



 $\tilde{x}$  .

 $\hat{\theta}_{\mathrm{b}_{I}}$ 

 $\mathbf{p}_i$ 

 $\Rightarrow$  Splitting decay chain of top quark event into two steps t  $\rightarrow$  W b  $\,$  and  $\,$  W  $\rightarrow$  l  $\nu$ 

$$E_{t} = \underbrace{E_{b} + E_{W}}_{step1} = E_{b} + \underbrace{E_{l} + E_{\nu}}_{step2} \qquad \& \quad \vec{p}_{t} = \vec{p}_{b} + \vec{p}_{W} = \vec{p}_{b} + \vec{p}_{l} + \vec{p}_{\nu}$$
$$m^{2} = E^{2} - \vec{p}^{2} - (E_{v} + E_{w})^{2} - (\vec{p}_{v} + \vec{p}_{w})^{2} \qquad \land$$

$$m_t - L_t - p_t - (L_b + L_W) - (p_b + p_W)$$
$$= m_b^2 + m_W^2 + 2E_b \cdot E_W - 2p_b \cdot p_W \cos \theta_{bW}$$

- $\vec{p}_W$  restricted to ellipsoid's surface
- $\bullet$  Solve step 2 for  $\vec{p}_{\nu}$  analogously
- + shift by  $\vec{p}_l$  to get 2. ellipsoid for  $\vec{p}_W$
- intersect ellipsoids

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 6/16





 $\Rightarrow$  Splitting decay chain of top quark event into two steps t  $\rightarrow$  W b  $\,$  and  $\,$  W  $\rightarrow$  l  $\nu$ 

$$E_{t} = \underbrace{E_{b} + E_{W}}_{step1} = E_{b} + \underbrace{E_{l} + E_{\nu}}_{step2} \qquad \& \quad \vec{p}_{t} = \vec{p}_{b} + \vec{p}_{W} = \vec{p}_{b} + \vec{p}_{l} + \vec{p}_{\nu}$$
$$m_{t}^{2} = E_{t}^{2} - \vec{p}_{t}^{2} = (E_{b} + E_{W})^{2} - (\vec{p}_{b} + \vec{p}_{W})^{2} \qquad \sum_{\tilde{z}, \tilde{z}'}$$

$$= m_b^2 + m_W^2 + 2E_b \cdot E_W - 2p_b \cdot p_W \cos \theta_{bW}$$

- $\vec{p}_W$  restricted to ellipsoid's surface
- $\bullet$  Solve step 2 for  $\vec{p}_{\nu}$  analogously
- + shift by  $\vec{p_l}$  to get 2. ellipsoid for  $\vec{p_W}$
- intersect ellipsoids

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 6/16

 $\tilde{x}$  .

 $\Rightarrow$  Splitting decay chain of top quark event into two steps t  $\rightarrow$  W b  $\,$  and  $\,$  W  $\rightarrow$  l  $\nu$ 

$$E_{t} = \underbrace{E_{b} + E_{W}}_{step1} = E_{b} + \underbrace{E_{l} + E_{\nu}}_{step2} \quad \& \quad \vec{p}_{t} = \vec{p}_{b} + \vec{p}_{W} = \vec{p}_{b} + \vec{p}_{l} + \vec{p}_{\nu}$$

$$m_{t}^{2} = E_{t}^{2} - \vec{p}_{t}^{2} = (E_{b} + E_{W})^{2} - (\vec{p}_{b} + \vec{p}_{W})^{2}$$

$$= m_{b}^{2} + m_{W}^{2} + 2E_{b} \cdot E_{W} - 2p_{b} \cdot p_{W} \cos \theta_{bW}$$

$$= \vec{p}_{W} \text{ restricted to ellipsoid's surface}$$

$$= \text{ Solve step 2 for } \vec{p}_{\nu} \text{ analogously}$$

$$+ \text{ shift by } \vec{p}_{l} \text{ to get 2. ellipsoid for } \vec{p}_{W}$$

• intersect ellipsoids

 $\Rightarrow$  ellipse with  $\infty$  solution points  $\equiv$  ES

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 6/16



 $\tilde{x}$  .

 $\Rightarrow$  Splitting decay chain of top quark event into two steps t  $\rightarrow$  W b  $\,$  and  $\,$  W  $\rightarrow$  l  $\nu$ 

$$E_{t} = \underbrace{E_{b} + E_{W}}_{step1} = E_{b} + \underbrace{E_{l} + E_{\nu}}_{step2} \quad \& \quad \vec{p}_{t} = \vec{p}_{b} + \vec{p}_{W} = \vec{p}_{b} + \vec{p}_{l} + \vec{p}_{\nu}$$

 $\tilde{z}.\tilde{z}$ 

 $\tilde{x}$  .

$$m_t^2 = E_t^2 - \vec{p}_t^2 = (E_b + E_W)^2 - (\vec{p}_b + \vec{p}_W)^2$$

$$=m_b^2+m_W^2+2E_b\cdot E_W-2p_b\cdot p_W\cos\theta_{bW}$$

- $\vec{p}_W$  restricted to ellipsoid's surface
- $\bullet$  Solve step 2 for  $\vec{p}_{\nu}$  analogously
- + shift by  $\vec{p_l}$  to get 2. ellipsoid for  $\vec{p_W}$
- intersect ellipsoids
- $\Rightarrow$  ellipse with  $\infty$  solution points  $\equiv$  ES
- analogously for antitop quark
- $\rightarrow$  intersect ES of  $\vec{p_{\nu}}$  with MET ellipse
- $\rightarrow$  in total max. 8 solutions

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 6/16

#### Signal events used for

Betchart vs. Sonnenschein comparison

Test on

- Monte Carlo samples on parton level
- With 10000 events, respectively
- Betchart and Sonnenschein algorithm provided
  - ightarrow with fixed values for  $m_t, m_{ar{t}}, m_{W^{-/+}}$
  - $\rightarrow$  and correct b-jet matching
- NLO model files of http://feynrules.irmp.ucl.ac.be/wiki/DMsimp used for generation of  $t\bar{t}$ DM samples

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 7/16



#### Kinematic reconstruction Betchart vs. Sonnenschein



#### What's next?



- & Continuing with Betchart's approach
- Ellipse of solution = ES gotten without MET
   → more robust for higher Φ masses
- Finding condition without using MET for determining the correct solution on ellipse
- $\rightarrow$  Search gets more sensitive for higher mediator masses (>100 GeV) where Sonnenschein breaks down



Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 9/16



with 1 Spin-0 and 1 Spin-1 mediator



Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 10/16

with Spin-0 mediator s and Spin-1 mediator Z'



**Motivation** DM mass generation needed + relaxing experimental constraints from DM relic abundance

ightarrow new U(1)' gauge group for dark sector ightarrow symmetry breaking

 $\rightarrow$  gives rise to Z' and DM masses

#### DM Majorana fermions

Six parameters for description needed:  $g_q, g_\chi, m_\chi, m_{Z'}, m_s, \theta$ with  $\theta$ = mixing angle between dark and SM Higgs arXiv: 1510.02110, 1606.07609, 1701.08780

#### Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 11/16



with Spin-0 mediator s and Spin-1 mediator Z'



↑ Recoil of DM particles ↑ against visibly decaying dark Higgs

 $\clubsuit$  For  $m_s < m_\chi,$  annhiliation channel  $\chi\chi \to ss$  facilitates reaching the correct DM relic abundance

- $\Rightarrow$  Experimental constraints relaxed
- DM production via additional Z' mediator gives rise to dark-Higgs strahlung
  arXiv: 1510.02110, 1606.07609, 1701.08780

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 12/16

with Spin-0 mediator s and Spin-1 mediator Z'



How does it compare to the mono-jet search?

arXiv: 1510.02110, 1606.07609, 1701.08780

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 12/16



#### Dark Higgs: New search possibilities



 $10^{-4} \bigcup_{0}^{-4} \bigcup$ 

Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 13/16



#### What's next?

- $s 
  ightarrow b ar{b}$  covered in arXiv: 1701.08780
  - ⇒ see talk T 77.8 on Thursday, 22nd March, at 18.30 "Hunting the Dark Higgs at CMS" by Samuel Baxter

But other decay modes also possible:

 $\Rightarrow$  Study expected LHC sensitivity for various Z' masses for different decay modes:



Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 14/16

## Conclusion.

#### • Simplified model with Spin-0 mediator

Kinematic reconstruction by Betchart will increase sensitivity in search for  $t\bar{t}$ DM considerably

#### • Simplified model with Spin-0 and Spin-1 mediators

Search for p p  $\to \chi \chi s$  production will be extended by including further s decay modes



Nicole Stefanov - DPG-Frühjahrstagung, Würzburg, 20.03.2018 - 15/16

# Thanks for your attention!

## Any Guestions?

