Search for high mass Higgs boson production in final states with b-quarks with the LHC Run II data

Chayanit Asawatangtrakuldee¹, Ye Chen⁵, Elisabetta Gallo^{1,4}, Clemens Lange³, Rainer Mankel¹, Gregor Mittag¹, Alexei Raspereza¹, <u>Rostyslav Shevchenko¹</u>, Alexander Spiridonov², Antonio Vagnerini¹, Roberval Walsh¹

¹ - DESY, ² - ITEP Moscow, ³ - CERN,

⁴ - University of Hamburg, ⁵ - IHEP

DPG - Frühjahrstagung, Würzburg 2018

20/03/2018

MSSM $H \rightarrow bb$

*13 TeV measurements so far indicate consistency of the h(125) with the Standard Model (SM)

*However, several phenomena are not explained by the SM:

*Dark matter and energy, gravity, neutrino masses...

*h(125) still can be only the one member of an extended Higgs Sector:
 *direct searches for Heavy Higgs bosons to check this!
 *Heavy neutral Higgs bosons predicted by several BSM extensions:

*13 TeV measurements so far indicate consistency of the h(125) with the Standard Model (SM)

*However, several phenomena are not explained by the SM:

*Dark matter and energy, gravity, neutrino masses...

*h(125) still can be only the one member of an extended Higgs Sector:
 *direct searches for Heavy Higgs bosons to check this!
 *Heavy neutral Higgs bosons predicted by several BSM extensions:

*Higgs sector of Two Higgs Doublet Model (2HDM):

2 doublets	•	CP-even	CP-odd	Charged	
$\Phi_2 \Phi_1$	•	h, H	А	H^{\pm}	(h, H, A) ≡ φ

*tan β - ratio of vacuum expectation values ; α - mixing angle between h and H

***4 types of 2HDM** with natural flavour and CP conservation, depending on how the 2 Higgs doublet fields couple to SM particles

*Minimal Supersymmetric Standard Model (MSSM) features same Higgs sector structure as in Type II:

***Two parameters at tree-level: m_A and tan**β

BSM Híggs searches	20.03.2018
	- $ -$

Type II

20.03.2018

favored:

BSM Híggs searches

2HDM and MSSM:

 $BR(A \to X)$

*Enhanced b-couplings in various scenarios within

*Moreover in Flipped scenario leptons are dis-

Flipped

Ľ

Search for the b-associated production of degenerate H and A in higher mass region:

*cross-section enhanced up to
~ 2tan²β both in MSSM and 2HDM models;

*better background control

*Main challenge: huge background rate from QCD multi jet production

*dedicated trigger has been developed

*7+8 TeV analysis achieved best sensitivity in this channel to date:

improve further with 13 TeV data

Φ

20000

q QQQQ

tanβ

60 r

50

40

30

20

10

20.03.2018

100

350

250

200

IHEP11(2015)071

150

300

95% CL limit Expected ±1σ expected

400

±2σ expected Observed

450

m₄ [GeV]

500

13 TeV analysis overview

"Bump hunting"

★Effect of the trigger p_T turn-on and b tagging

*Efficiency up to 1.5% at 500 GeV mass point

*Model QCD background using analytical function

*Find control region with a shape of M_{12} similar to the signal region \rightarrow validated in MC

*"Reverse b-tag CR" has been selected

*Main challenge:

*precise fit of a large mass range including the background peak region

*Divide M₁₂ range into 3 sub-ranges to reduce the bias from the choice of the function and simplify the fitting procedure

Background estimation: signal region

Parameters of the background pdfs allowed to change between CR and SR:
Data is well fitted with functions developed in the CR

***No excess** found → compute Upper Limits

Model independent upper limits

systematic uncertainties	Size	
kinematic trigger efficiency, p/jet	0 - 7 %	*
jet energy scale / resolution, p/jet	1 - 6 %	U
b-tag efficiency(b/c), p/jet	2 - 5 %	
b-tag efficiency(udsg), p/jet	< 0.3 %	
pileup	4,6 %	
luminosity	2,5 %	
online b-tag efficiency, p/jet	0.8-1.3 %	qd
background specific, p/sub-range	100 %, 25 % ,20 %] (<u>q</u> q
pdf + α_s , mssm/2hdm cross-section	1 - 6 %	<u>↑</u>
QCD scale, mssm/2hdm cross-section	1 - 10 %	¥
NLO correction for the selection eff.	5 %	B(/

Main features

*Mass range is extended up to 1300 GeV in comparison to 8 TeV analysis; *no significant excess found *At 500/1100 GeV limits are calculated in adjoint sub-ranges

The most prominent systematic **incertainties**

*Offline b-tag efficiency, jet energy scale, bias

Observed limits are translated into exclusion limits on MSSM parameters - tanβ and MA
 Interpretation within the mh^{mod+} and hMSSM benchmark scenarios^{*}.

* New hMSSM interpretation: lower tanβ limits than m_hmod+ at large M_A

* - τ -phobic, light- \tilde{t} and light- $\tilde{\tau}$ in the backup Rostyslav Shevchenko 11

Exclusion limits** on tanβ vs M_A and cos(β-α) for 2HDM Flipped and Type-II models: **values of cos(β-α) = 0.1 and M_A = 300 GeV were chosen to compare with ATLAS A \rightarrow

Zh analysis [0]

* Our measurements are uniquely sensitive for small $|\cos(\beta - \alpha)|$ (alignment limit) for high values of tan β :

*this is where h couplings are SM-like

 $M_A = 300 \text{ GeV}$

[0] - ATLAS collab., arXiv:1712.06518

 $M_A = 500 \text{ GeV}$

***** Exclusion limits on tan β vs M_A and cos(β - α) :

*values of cos(β-α) = 0.1 and M_A = 300 GeV were chosen to compare with ATLAS A \rightarrow Zh analysis [0]

Our measurements are the only sensitive near the alignment limit for high values of tanβ:
 *where couplings are the most SM-like

[0] - ATLAS collab., arXiv:1712.06518

BSM Higgs searches

 A new search for high mass Higgs boson in bb decay channel in association with bquarks was presented
 *unique analysis at LHC

- Results interpretations in context of MSSM:
 *improved limits in mh^{mod+} and new hMSSM interpretation
- ★ Analysis put strong constrains on the relatively unexplored «Flipped» 2HDM scenario:
 ★Complements ATLAS measurements of A→Zh;
 ★Cover alignment limit for large range of tanβ.
- * Analysis to be **published soon**

BACKUP

MSSM H→bb

*****Higgs sector of **Two Higgs Doublet Model** (2HDM):

2 doublets	CP-even	CP-odd	Charged	
$\Phi_2 \Phi_1$	h, H	А	H±	(h, H, A) ≡ φ
		100.1		

*tan β - ratio of vacuum expectation values ;
* α - mixing angle between h and H+other
parameters

***4 types of 2HDM** with natural flavour and CP conservation, depending on how the 2 Higgs doublet fields couple to SM particles

*Higgs sector of Two Higgs Doublet Model (2HDM):

2 doublets	CP-even	CP-odd	Charged	
$\Phi_2 \Phi_1$	h, H	А	H±	(h, H, A) ≡ φ

*tan β - ratio of vacuum expectation values ;other*α - mixing angle between h and H+otherparameters

***4 types of 2HDM** with natural flavour and CP conservation, depending on how the 2 Higgs doublet fields couple to SM particles

Minimal Supersymmetric Standard Model (MSSM)

*Features two complex Higgs doublets as in 2HDM.

*****Two parameters at tree-level:

m_A and tanβ

$$\begin{split} m_{H^{\pm}}^2 &= m_A^2 + m_W^2 \\ m_{H,h}^2 &= \frac{1}{2} (m_A^2 + m_Z^2 \pm \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 cos^2 2\beta}) \\ tan \alpha &= \frac{-(m_A^2 + m_Z^2) sin 2\beta}{(m_Z^2 - m_A^2) cos 2\beta + \sqrt{(m_A^2 + m_Z^2)^2 - 4m_A^2 m_Z^2 cos^2 2\beta}} \end{split}$$

*MSSM features:

*Solve hierarchy problem

*introduce dark-matter candidate

Compatibility with h(125) achieved by the HO corrections:

*mh increased up to 30%

*Variety of benchmark scenarios to test different phase-space properties:

 $m_{h^{mod+}}; low-\tilde{\tau}, low-\tilde{t}, hMSSM...$ [0]

[0] - M. Carena et al., Eur. Phys. J. C 73 (2013) 2552

* Function taken from H. Ikeda et al. NIM A441 (2000), p.401 (Belle Collaboration):

$$F(x) = N \exp\left(-\frac{1}{2\sigma_0^2} \ln^2 (1 - \frac{x - x_p}{\sigma_E} \eta) - \frac{\sigma_0^2}{2}\right)$$
$$\sigma_0 = (2/\xi) \sinh^{-1}(\eta\xi/2)(\xi = 2\sqrt{\ln 4} = 2.36)$$

* where $x_p = peak$, $\sigma_E = width$

Extended Novosibirsk PDF was introduced to give more flexibility to the function by adding one more "tail" term:

$$F(x) = N \exp(-\frac{1}{2\sigma_0^2} \ln^2(1 - \frac{x - x_p}{\sigma_E}\eta - p_4 \frac{(x - x_p)^2}{\sigma_E}\eta) - \frac{\sigma_0^2}{2})$$

*****η = tail

***** F(x) = 0.5*Erf(P₀*(x-P₁))+1) *****where Erf(x) = 2/√π * ∫e^{-t^2} dt — integral between 0 to x

*P₀ indicates slope of this turn-on function and P₁ is turn-on point

0.5*(TMath::Erf(0.05*(x-205))+1)

Expected limits are translated into exclusion limits on MSSM parameters - tanβ and MA
 Interpretation performed using NNLO cross sections in the Santander matching within the light-τ̃, light-t̃ and τ-phobic benchmark scenarios

*13 TeV limits are better than at 7 + 8 TeV

*Standard Novosibirsk function has been extended to **Super**Novosibirsk function:

$$F(x) = N \cdot exp(-\frac{1}{2\sigma_0^2} ln^2 (1 - \frac{\eta}{\sigma_E} \cdot (\sum_{i=1}^n p_{(i-1)} \cdot (x - x_p)^i) - \frac{\sigma_0^2}{2}))$$

$$\sigma_0 = (2/\epsilon) sinh^{-1} (\eta \epsilon/2)$$

$$\epsilon = 2\sqrt{ln4}) = 2.36$$

*****p₀ = 1;

*****η - tail parameter;

 $*\sigma_{E}$ - width;

*x_p - peak position