Hunting the Dark Higgs

Samuel Baxter

Imperial College London

Contents

- Dark Matter
- Motivation for the Dark Higgs Model
- The Dark Higgs Model
- Applying Existing Analysis

Dark Matter

 A popular assumption for Dark Matter is to regard them as WIMPs, weekly interacting massive particles

Dark Matter Search Strategies

Limitations of Simple Dark Matter Models

Samuel Baxter, Imperial College London, DESY

Advantage of the Dark Higgs Model

Adding a Dark Higgs which is lighter than Dark Matter enables an annihilation process for Dark Matter that relaxes the constraints for reaching the observed Dark Matter relic abundance

Dark Higgs Model

- New U(1)' gauge group with three new particles
 - A vector boson, Z'
 - A fermionic Dark Matter particle, χ
 - A scalar boson, *s* (the Dark Higgs)
- The masses of Z' and χ and the existence of the Dark Higgs are a result of spontaneous symmetry breaking of the new U(1)' symmetry group

$$\mathcal{L}_{\chi} = -rac{1}{2} g_{\chi} Z^{\prime \mu} ar{\chi} \gamma^5 \gamma_{\mu} \chi - g_{\chi} rac{m_{\chi}}{m_{Z^{\prime}}} s ar{\chi} \chi + 2 \, g_{\chi} \, Z^{\prime \mu} Z^{\prime}_{\mu} \left(g_{\chi} \, s^2 + m_{Z^{\prime}} s
ight)$$

• The Z' is also coupled to quarks, giving rise to the following term:

$$\mathcal{L}_{\chi} = -g_q Z^{\prime \mu} \bar{q} \gamma_{\mu} q$$

Expected Signal

- The Dark Higgs can decay to Standard Model particles via a small but non-zero mixing angle to the Standard Model Higgs
- We assume the following mass relations: $m_{Z'}>2m_{\chi}$, $m_{\chi}>m_s$

M. Duerr et al., "Hunting the dark Higgs" arXiv:1701.08780v1 [hep-ph] 30 Jan 2017 With 10 GeV < m_s < 160 GeV, we have the dominant decay: $s \rightarrow b + \overline{b}$

We therefore search a signal with two b-tagged jets and large E_T^{miss}

Selected Mass Points

M. Duerr et al., "Hunting the dark Higgs" arXiv:1701.08780v1 [hep-ph] 30 Jan 2017

- 3 mass points selected with the following assumptions:
 - Dark Higgs mass: 70 GeV
 - Integrated luminosity: 35.9 fb⁻¹
 - Assuming $g_q=0.25$ and $g_{\chi}=1$

Applied Analysis

- Inclusive search for SUSY/Dark Matter
 - Low thresholds on H_T (200 GeV) and H_T^{miss} (120 GeV)
 - Starts from n_{jet}=1 and n_b=0
 - Veto on leptons and photons
- Background control
 - QCD suppression with tight cuts on α_T , $\Delta \phi^*$ and H_T^{miss}/E_T^{miss}
 - Data driven estimation of remaining backgrounds (W, Z and ttbar)
- Sensitivity
 - Splits data into bins of H_T , H_T^{miss} , n_{jet} and n_b

The α_T variable

$$\alpha_{\rm T} = \frac{1}{2} \times \frac{H_T - \Delta H_T}{\sqrt{H_T^2 - (H_T^{miss})^2}}$$

For a pseudo di-jet system with pseudo jet p_T difference: ΔH_T

The pseudo jets are constructed from a sum of all jets in the system so as to minimise ΔH_T

Work in progress

$\sigma/\sigma_{\rm theory}$ for exclusion at 95 % confidence

Conclusion and Outlook

- Searching for a Dark Higgs allows us to probe regions of parameter space not covered by searches based on simpler Dark Matter models
- The applied analysis is sensitive to the Dark Higgs model, but still lacks behind in sensitivity compared to a dedicated search
- The plan ahead is to make a dedicated analysis for a long lived version of the Dark Higgs model

Backup

ge4b_ge2a												 24
eq3b_ge2a	0.05	0.20	0.11	0.09	0.10	0.03						
eq2b_ge2a	16.53	14.24	8.46	4.33	2.44	0.35	0.12	0.02	0.03	0.02	0.05	
eq1b_ge2a	<mark>24.6</mark> 8	21.30	13.07	7.43	6.83	2.06	0.86	0.36	0.62	0.35	0.27	22
eq0b_ge2a	10.05	9.36	6.11	3.07	2.94	1.06	0.48	0.16	0.37	0.16	0.11	
ge4b_ge6j							0.01			0.01		 20
eq3b_ge6j						0.03	0.03	0.02	0.02	0.01	0.04	
eq2b_ge6j					0.03	0.13	0.18	0.12	0.14	0.06	0.10	18
eq1b_ge6j					0.05	0.16	0.32	0.30	0.18	0.12	0.21	
eq0b_ge6j				_		0.09	0.09		0.01	0.05	0.09	
ge4b_eq5j					0.02		0.04				0.01	16
eq3b_eq5j				0.00	0.03	0.06	0.07	0.02			0.02	
eq2b_eq5j				0.02	0.51	0.73	0.59	0.27	0.21	0.13	0.14	 14
eq1b_eq5j				0.07	0.55	0.74	0.97	0.48	0.34	0.30	0.37	
eq0b_eq5j				0.02	0.27	0.24	0.19	0.31	0.19	0.10	0.15	 12
ge4b_eq4j					0.02							12
eq3b_eq4j				0.02	0.05	0.08	0.12		0.02	0.02		
eq2b_eq4j			0.17	0.56	1.83	1.58	0.93	0.32	0.28	0.22	0.20	10
eq1b_eq4j			0.17	1.17	3.07	1.98	1.99	1.20	0.54	0.55	0.62	
eq0b_eq4j			0.12	0.45	1.50	0.90	0.73	0.41	0.42	0.17	0.23	 8
eq3b_eq3j		0.02	0.06	0.08	0.06		0.00	0.04	0.04			
eq2b_eq3j		0.78	2.12	2.26	2.76	0.98	0.69	0.31	0.17	0.09	0.14	6
eq1b_eq3j		0.98	3.39	3.91	5.93	3.40	2.47	1.21	1.21	0.70	0.76	0
eq0b_eq3j		0.41	1.19	1.61	2.32	1.73	1.15	0.50	0.41	0.16	0.32	
eq2b_eq2j	2.79	4.85	2.32	0.36	0.22	0.05	0.02	0.02	0.08	0.01		 4
eq1b_eq2j	3.83	6.98	4.30	2.08	2.66	1.79	1.71	0.74	0.95	0.43	0.33	
eq0b_eq2j	1.41	2.45	2.67	1.35	2.03	0.79	0.71	0.15	0.23	0.14	0.19	2
eq1b_eq1j	18.96	15.17	16.19	15.16	18.50	9.09	5.43	2.36	0.96	0.50	0.39	
eq0b_eq1j	15.65	10.80	8.24	6.16	6.78	3.20	<mark> 2.10 </mark>	0.82	0.35	<mark> 0.29 </mark>	0.29	
20	00	0 400			0	600		800	1000	1200		0
											HT	

Samuel Baxter, Imperial College London, DESY