

Top Quark Physics at the LHC: Probing the Energy Frontier

Carmen Diez Pardos DESY

DPG-Frühjahrstagung Würzburg 19-23 March 2018

The fundamental building blocks of matter

- SM: Successful description of elementary particles and interactions
- LHC experiments discovered a new Higgs-like boson
- Candidate to close the long-standing puzzle of how elementary particles acquire mass in the SM
- But does it behave like the SM Higgs?

- There are several open questions that the SM cannot answer
- Extensive search for possible SM extensions, but no signs of New Physics yet

The top quark: a special particle

Carmen Diez Pardos

1.- Constraining the Standard Model

• Determination α_s

 Test QCD predictions and help constraining the PDFs (especially gluon distribution)

Determination of m_t

- Participates in quantum loop radiative corrections to m_W together with m_H : assessment of self-consistency within SM
- Other properties: couplings, asymmetries predicted by the SM

Top quarks are a unique tool for stringent tests of the SM

2. - The top quark and the Higgs boson

In the SM, elementary particles acquire mass via their interaction with the Higgs field

- The most massive known particle → large couplings
- Essential to study Higgs properties, measure top Yukawa coupling
- Several open questions
 - Is the mass of the top quark generated by the Higgs mechanism?
 - Role in electroweak symmetry breaking?

Top quarks at the LHC are crucial to pin down the SM nature of the Higgs

3.- Special role in New Physics?

- Main background for Higgs and many searches for New Physics
- Top quark is a main ingredient of many BSM scenarios
 - Exotic partners, rare decays, heavy resonances decaying to top, new particles produced with top, ...

... and a sensitive probe for New Physics

The top quark: Before...

100000s events 36 events 1000s events CMS Lepton+iets, 19.7 fb⁻¹ (8 TeV) 12000 17 events Permutations / 5 GeV Singlet tī correct DØ 250 CDF II Preliminary W+jets tī wrona Z+jets QCD multijet Events/(20 GeV/c2) 10000 tī unmatched Data (8.7 fb⁻¹) Data Diboson Signal+Bkgd 8000 After Past selection Bkgd only 6000 Tagged 4000 Fitted Mass (GeV/c2) 2000 50 19 events CDF Data/MC 100 1.5 150 300 200 250 m^{reco} (GeV/c²) 350 0.5 100 300 400 m^{fit} [GeV] 160 200 240 Reconstructed Mass (GeV/c2 1995 2009 2010 2012 Tevatron pp 1.96 TeV LHC Run-1 pp (7 and 8 TeV) First observation of "Birthplace" of the top single top production top factory: 25 fb $^{-1}$

Carmen Diez Pardos

Today's talk

Personal selection of results, mostly from Run-2

- $t\bar{t}$ rate and dynamics
- $t\bar{t}$ + "Friends" (W/Z, H, $t\bar{t}$)
- Single top quark

Top quark production and decay

Top quark production

 $tar{t}$ production mainly by gluon fusion at LHC (${\sim}85\%$ at 13 TeV)

t production via EWK interaction

NNLO+NNLL calculation
 PRL 110 (2013) 252004

 $\sigma(8 \text{TeV}) = 245 \text{ pb} \pm 6\%$ $\sigma(13 \text{TeV}) = 832 \text{ pb} \pm 5\%$ $R_{13/8}=3.3$

- t-channel $\sigma(13 \text{TeV}) = 217 \text{ pb} \pm 4\%$ $R_{13/8}=2.6$
- tW-channel $\sigma(\text{8TeV}) = 71 \text{ pb} \pm 5\%$ $R_{13/8}=3.2$
- s-channel σ(13TeV) = 10.3 pb ± 4%
 R_{13/8}=1.9

Cross sections at NLO or NNLO tW (arXiv:1311.0283)

Top quark decay signatures

In the SM $\mathrm{t} \to \mathrm{Wb}$ almost 100%, W decay defines final state

Top Pair Decay Channels

Identifying top quarks

$t\overline{t}$ production

proton-proton collisions at 13 TeV centre-of-mass energy

roduction

Run: 266919 Event: 19982211 2015-06-04 00:21:24

Rates and dynamics of production: First step in understanding top physics

Carmen Diez Pardos

$t\bar{t}$ cross section measured at all energies

Differential regime

Scrutinize $\mathrm{t}\bar{\mathrm{t}}$ production as a function of many kinematic observables:

- Comparisons with state-of-the-art predictions (and future calculations)
- Extraction of mass, α_S, constrain PDF

Wealth of results available

In general agreement with SM predictions for all measured distributions

Top quark $p_{\rm T}$ distribution

• Run-I "discovery": p_{T}^{t} spectrum is softer in data than in (most) MC simulations

- Results in all final states: NLO calculations do not describe p^t_T Also observed at 13 TeV
- NNLO calculation available: CMS and ATLAS data well described

$t\bar{t}+jets$

At LHC energies, about half of $\mathrm{t}\bar{\mathrm{t}}$ events are produced with additional hard jets

- Reveal presence of new physics in $t\bar{t}+jets$ final states, background for $t\bar{t}H$
- Investigate MC description of QCD radiation

$t\overline{t}+\mathsf{X}$

Data recorded: Sun Nov 1 23:42:02 2015 CET Run/ Event: 260576 / 281864880 Lumi section: 137

z 103.6 GeV Electron Very low production cross sections O(fb) Typically need multivariate analysis techniques to maximize sensitivity

let

Couplings to bosons: $t\bar{t}+W/Z$

- Measure couplings to bosons
- Important background for BSM searches
- Analyses are performed in bins of the number of selected leptons (2,3,4)
- Different number of leptons \rightarrow different admixture of $t\bar{t}W$ and $t\bar{t}Z$ processes

 $>5\sigma$ for both processes simultaneously!

Results: Effective Field Theory Interpretation

Model independent search for new phenomena

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \sum_{i} c_i \mathcal{O}_i + \frac{1}{\Lambda^2} \sum_{j} c_j \mathcal{O}_j + \cdots$$

Constraints on dimension-6 operators

Carmen Diez Pardos

Top-Higgs coupling: the hunt for $\mathrm{t\bar{t}H}$

Best direct probe of the top-Higgs Yukawa coupling, vital step towards verifying the SM nature of the Higgs boson

- Top quark is the most strongly-coupled SM particle $(y_t \sim 1)$
- Direct measurement of y_t in $t\bar{t}H$ production:
 - Allows probing new physics in gg ${\rightarrow}$ H and H ${\rightarrow}$ $\gamma\gamma$ effective vertices

 One of the physics targets for Run-2: σ ≈0.5 pb at √s=13TeV (m_H=125GeV), understanding of tt̄+X is crucial $t\overline{t} + X$ $t\bar{t}+H$

$t\bar{t}H$: Observation is around the corner

22/42

 $t\overline{t} + X = t\overline{t}t\overline{t}$

Search for SM four top quark production

- Tiny cross section in SM: $\sigma_{t\bar{t}t\bar{t}}^{SM} \sim 10 \text{ fb@13 TeV}$
- Many BSM models predict an increase: Particles decaying to top quarks or modified couplings, massive coloured bosons, composite Higgs/top, extra dimensions, SUSY...
- Meausurements can be used to constrain y_t

Single Top

Run: 267073 Event: 279124678 2015-06-05 02:24:03

Single top production

Probe CKM matrix element $|V_{\rm tb}|$, model-independent EWK coupling structure Probe alternative production mechanisms (e.g heavy bosons, FCNC)

Single Top

Single top production via EWK interaction

Single top quark cross section at 13 TeV as large as the $t\bar{t}$ cross section at 7-8 TeV Ramping up towards new era of high-precision in single top quark!

Evidence for SM tZq production

- Sensitive to tZ-coupling, triple-boson coupling, backgrounds for searches
- Trilepton channel most promising for first observation

Another milestone in the cross section frontier!

Search for FCNC tZ production

- Sought for $t \rightarrow Zq$: BR SM = O(10⁻¹⁵)
- In models beyond SM: BR BSM \sim O(10⁻⁵)-O(10⁻⁶)
- Decay can be found in the FCNC production mode $gg{\rightarrow} t\bar{t} \rightarrow tZq$

 $\kappa_{tZu} = 0 \& \kappa_{tZc} \neq 0 : \mathcal{B} < 0.045\% (0.037\%)$ and

 $\kappa_{tZu} \neq 0 \& \kappa_{tZc} = 0 : \mathcal{B} < 0.024\% (0.015\%).$

Status of search for FCNC rare decays

No signs of flavour physics associated to top quarks, approaching sensitivity to BSM

Summary and outlook

- The LHC is a real top quark factory
 - Top quark measurements entered precision regime
 - Started to challenge theory predictions in many respects
- 13 TeV data is taking a central stage in SM top quark studies
 - $\bullet~$ Single top quark and $\mathrm{t}\bar{\mathrm{t}}$ inclusive cross sections
 - Plethora of differential measurements
 - Rare processes (ttV, tttt, tZq)
- ... and BSM searches with top quarks ongoing in a multitude of channels
- Coming up Next: More precision measurements of properties and top quark mass, FCNC, anomalous couplings, EFT with 13 TeV data, direct searches

The ultimate potential for top quark physics at the LHC is ahead of us!

ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults CMS: http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/index.html