The measurement of W-charge asymmetry at 13 TeV with the CMS detector.

Mariarosaria D'Alfonso, Vladyslav Danilov, Elisabetta Gallo, Katarzyna Wichmann

DPG-Frühjahrstagung, Würzburg March 22, 2018

SPONSORED BY THE

Federal Ministry of Education and Research

- > W^{\pm} bosons primarily produced in pp collisions through $u\bar{d} \to W^+$ and $\bar{u}d \to W^-$
- > W asymmetry is an effect of asymmetric production of W^+ bosons over W^-

$$A(\eta) = \frac{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) - \frac{d\sigma}{d\eta}(W^- \to \mu^- \bar{\nu})}{\frac{d\sigma}{d\eta}(W^+ \to \mu^+ \nu) + \frac{d\sigma}{d\eta}(W^- \to \mu^- \bar{\nu})}$$

Previous studies

W asymmetry was studied by ATLAS, CMS and LHCb. Main topics of interest:

- > Studies of additional constraints on the d/u ratio and on the sea antiquark densities in the proton.
- > improvement of the the PDF uncertainties for d and u quark flavors.

Previous CMS studies:

> 7 TeV: arXiv:1312.6283, Phys. Rev. D 90 (2014) 032004

Data sample:

- > 2015 at 13 TeV
- > Integrated luminocity $2.2 fb^{-1}$

Events selection:

> at least one muon, $p_T>25$ GeV, $|\eta|<2.4$

 $\begin{array}{l} \mbox{MET} \ ({ I\!\!\! E}_T) \mbox{ estimation is used to extract} \\ \mbox{the} \ W^{\pm} \ \mbox{boson signal from the} \\ \mbox{background.} \end{array}$

The E_{miss}^{T} model is fitted to the observed distribution as the sum of three contributions:

QCD background

QCD estimation is performed using fake factor method:

- > Control region:
 - prescaled non-isolated muon trigger
 - inverted isolation requirements
- The shape of the *E*_T control sample distribution is modeled by modified Rayleigh distribution:

$$f(x) = x * e^{\frac{x^2}{ax^2 + bx + c}} * (ax^2 + bx + c) > 0$$

$$a = 4.0 \in [-10.0, 10.0]$$

$$b = 6.0 \in [0.0, 20.0]$$

$$c = 2.9 \in [0.3, 6.0]$$

$$x \in [0.0, 2.0, 150.0]$$

M.D'Alfonso, V.Danilov, E.Gallo, K.Wichmann | DPG-Frühjahrstagung, Würzburg | March 22, 2018 | Page 6

Missing E^T for the whole eta region for W^+ & W^-

Results represent signal extraction.

For the future W asymmetry studies, \mathscr{K}_{T} has to be represented in a bins of η :

Region	η_{min}	η_{max}
1	0.0	0.2
2	0.2	0.4
3	0.4	0.6
4	0.6	0.8
5	0.8	1.0
6	1.0	1.2
7	1.2	1.4
8	1.4	1.6
9	1.6	1.85
10	1.85	2.1
11	2.1	2.4

Cross section per eta region allows to obtain the asymmetry values

$$A(\eta) = \frac{\frac{d\sigma}{d\eta} (W^+ \to \mu^+ \nu) - \frac{d\sigma}{d\eta} (W^- \to \mu^- \bar{\nu})}{\frac{d\sigma}{d\eta} (W^+ \to \mu^+ \nu) + \frac{d\sigma}{d\eta} (W^- \to \mu^- \bar{\nu})}$$

Eta binned results in a log scale for $\mathbf{W}^- \to \mu^- \bar{\nu}$

Converged fits provide signal yields for the cross-section calculations:

All eta regions shows a good agreement of MC with the Data

Eta binned results in a log scale for $\mathbf{W}^+ \rightarrow \mu^+ \nu$

Converged fits provide signal yields for the cross-section calculations:

All eta regions shows a good agreement of MC with the Data

Summary:

- > Well converged fit allowed η -binning implementation.
- > Extracted signal yields for different pseudorapidity regions allow to calculate the cross-section values.

Outlook:

- > Cross sections calculated for each pseudorapidity region will allow us to obtain the asymmetry values.
- > The muon charge asymmetry can be used in the global QCD analysis at NNLO together with the combined measurements of neutral- and charged-current cross sections of DIS at HERA:

 $\rightarrow X$ Fitter tool will be used for the fitting

BACK-UP

Muon selection requirements

Muons are identified using the following requirements:

Observable	Value or Range
p_T	> 25~GeV
$ \eta $	< 2.4
ld	Global Muon
ld	PFMuon
χ^2 /ndof	< 10
# Valid Muon Hits	> 0
# Matched Stations	> 1
# Tracker Layers	> 5
# Valid Pixel Hits	> 0
$ d_{0,pv} $	< 0.2
$ d_{z,pv} $	< 0.5
$PFIso/p_T$	< 0.12

Additional Muon Veto selection requirements

Events with additional muons are vetoed. This veto-muon passes a looser selection:

Observable	Value or Range
p_T	$> 10 \; GeV$
$ \eta $	< 2.4
ld	Global Muon TrackerMuon
ld	PFMuon
$PFIso/p_T$	< 0.2

Lepton efficiencies

The muon efficiencies are estimated in data and simulation using tag-n-probe technique:

 $e_{total} = e_{tracking+ID+ISO} \times e_{STA} \times e_{trigger}$

- < *e*_{tracking+ID+ISO}— efficiency for a track in the muon detector to be matched to a global muon that passes the identification and isolation criteria.
- < *e*_{STA} efficiency for an isolated tracker track from a muon to be matched to a global muon.
- < *e*_{trigger} efficiency for a fully identified and isolated muon to pass the trigger (HLT and Level-1) requirements.

Fit quality $\mathbf{W}^+ \rightarrow \mu^+ \nu$

*** Yields ***		
elected: 11007396		
Signal: 9171279 624	+/- 8594 765364	
OCD: 047603 7237	1/ 2054 001504	
000. 947003.7237	+/- 2004.091004	
Other: 888508.0627	+1 - 3302.022318	
intiSelected: 973747		
AntiSignal: 22270.53	557 +/- 2235.63	9688
AntiOCD: 944095.6	64 +/- 3131.211	926
AntiOther: 7368.341	286 +/- 739.674	9619
P		
ROOFITResult: minimi	zed FCN value:	-122103698.9, estimated distance to minimum: 6.212239145e-
covari	ance matrix qua	lity: Full, accurate covariance matrix
Status	: MIGRAD=4 HES	SE=0 MINOS=6
Constant Parameter	Value	
dewkr	3 38866-81	
Clasting Decemptor	TaitialValue	Finallylalus (ultifarms (afarms)) (b)(and
Floating Farameter	INITIAtAthe	Finalvalue (+HiError,-LOError) Obtcorr.
al_aqcdp	4.0000e+00	4.2476e+00 +/- 7.98e-02 <none></none>
al_qcdp	4.0000e+00	-7.7499e+00 +/- 4.06e-10 <none></none>
a2 agcdp	6.0000e+00	6.0991e+00 (+0.00e+00,-1.07e-01) <none></none>
a2 gcdr	6.0000e+00	1.0953e+01 +/- 6.89e-10 <none></none>
a3 adodr	2 90000+00	3 03790+00 (+0 000+00 -3 130-02) <none></none>
a3 ocdr	2 90000+00	1 6976e+08 +/- 1 18e-69 <none></none>
us_qcup	0 10570-02	0.69700.02
- t-tioco-	9.19576-02	9.441005 (-0.0000 - 3.1003)
nAntiquop	8.70370+05	9.4410e+05 (+0.00e+00,-5.18e+05) <none></none>
nAntiSigp	1.8132e+04	2.22/1e+04 (+0.00e+00,-2.2/e+03) <none></none>
nQCDp	3.3022e+06	9.4760e+05 +/- 2.85e+03 <none></none>
nSigp	8.8464e+06	9.1713e+06 +/- 8.59e+03 <none></none>
Correlation Matrix		
1 0000 0 0000 0	0520 0 0000	0.9551 0.0000 0.0017 0.2602 0.2925 0.0019 0.
1.0000 -0.0000 -0	.9329 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.0000 1.0000 6	.0000 -0.0000	-0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 -0.
-0.9529 0.0000 1	.0000 -0.0000	-0.8919 -0.0000 0.0010 0.4385 -0.4604 -0.0013 -0.
0.0000 -0.0000 -0	.0000 1.0000	0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.
0.8551 -0.0000 -0	.8919 0.0000	1.0000 0.0000 -0.0015 -0.1110 0.1165 0.0020 0.
0.0000 0.0000 -0	.0000 -0.0000	0.0000 1.0000 -0.0000 0.0000 -0.0000 0.0000 -0.
-0.0013 0.0000 0	.0010 0.0000	-0.0015 -0.0000 1.0000 -0.0014 0.0014 -0.6904 -0.
-0.2692 -0.0000 6	4385 0.0000	-0.1110 0.0000 -0.0014 1.0000 -0.9491 0.0018 0.
A 2825 A AAAA	4664 8 8666	0 1165 -0 0000 0 0014 -0 0401 1 0000 -0 0010 -0
0 0010 0 0000 0	0013 0 0000	0.0070 0.0000 0.0014 0.0010 0.0010 1.0000 0.
0.0000 0.0000 0	00005 0.0000	
0.0008 -0.0000 -0	.0000 -0.0000	0.0009 -0.0000 -0.9217 0.0008 -0.0008 0.5151 1.
Chi2 Test		
prob = 0.9984		
chi2/ndf = 0.584		
KS Test		
prob = 0.9646		
prob = 0.859 with 1	ABA neeudo.evna	riments
01000 01000 Willing	ere personal cape	

Fit quality $\mathbf{W}^- ightarrow \mu^- \bar{\nu}$

*** Yields *** Selected: 8835493 Signal: 7046466.383 +/- 11483.67287 OCD: 1180845.792 +/- 15895.04083 Other: 608190.3923 +/- 22129.60178 AntiSelected: 963128 Signal: 15609.54649 +/- 1734.483761 OCD: 940758.7991 +/- 2672.340669 Other: 6767.430474 +/- 751.9756113 RooFitResult: minimized FCN value: -97437178.98, estimated distance to minimum: 0.5290934814 covariance matrix quality: Full, accurate covariance matrix Status : MIGRAD=4 HESSE=0 MINOS=6 Constant Parameter Value dewkm 4.3354e-01 Floating Parameter InitialValue FinalValue (+HiError,-LoError) 4.2187e+00 (+8.12e-02,--0.00e+00) <none> al agcdm 4.0000e+00 al gcdm 4.0000e+00 4.4075e+00 (+0.00e+00.-1.28e-01) <none> a2_aqcdm 6.0000e+00 6.1310e+00 (+9.82e-02.--0.00e+00) <none> a2 gcdm 6.0000e+00 6.5184e+00 (+1.14e-01,-2.19e-01) <none> a3 agcdm 2.9000e+00 3.0465e+00 (+3.21e-02,--0.00e+00) <none> a3 dcdm 2.9000e+00 1.6982e+00 (+0.00e+00.-1.03e-02) 1.0695e-01 8.6311e-02 +/- 3.24e-03 8.6682e+05 9.4076e+05 (+2.63e+03,-2.71e+03) nAntiQCDm nAntiSiam 1.3471e+04 1.5610e+04 (+1.75e+03.-1.72e+03) <none> n0CDm 2.6506e+06 1,1808e+06 (+1,60e+04,-1,48e+04) 6.8191e+06 7.8465e+06 +/- 1.15e+04 Correlation Matrix 1.0000 -0.0007 -0.9516 -0.0002 0.8601 0.0004 0.0010 -0.1947 0.2086 -0.0008 -0.0008 -0.0007 1.0000 0.0010 -0.4405 -0.0006 -0.4077 -0.6559 0.0011 -0.0012 0.3317 0.7786 -0.9516 0.0010 1.0000 0.0003 -0.9130-0.0006 -0.0013 0.3622 -0.3880 0.0011 0.0010 -0.0802 -0.44050.0003 1.0000 -0.0001 0.0397 0.0006 -0.0006 -0.31840.8601 -0.0006 -0.0001 1.0000 0.0004 0.0008 -0.1028 0.1101 -0.0007 -0.0001 0.0004 -0.4077-0.0006 0.0397 0.0004 1.0000 0.4007 -0.0007 0.0007 -0.1673-0.6559 -0.0013 -0.2942 0.0008 0.4007 1.0000 -0.0018 0.0019 -0.8612 0.0010 -0.7343-0.1947 0.0011 0.3622 0.0006 -0.1028 -0.0007 -0.0018 1.0000 -0.9301 0.0016 0.0012 0.2086 -0.0012 -0.3880 -0.0006 0.1101 0.0007 0.0019 -0.9301 1.0000 -0.0017 -0.0013 0.0008 0.3317 0.0011 -0.0807 -0.8612 0.0016 -0.00171.0000 0.3092 0.0010 -0.3184 -0.0007 -0.5208 -0.7343 -0.0008 0.7786 0.0012 -0.0013 0.3092 1.0000 Chi2 Test prob = 1chi2/ndf = 0.4089 KS Test prob = 1 prob = 0.997 with 1000 pseudo-experiments

Eta binned results in a linear scale for $\mathbf{W}^+ ightarrow \mu^+ u$

Eta binned results in a linear scale for ${f W}^- o \mu^- ar u$

Eta binned results in a log scale for $\mathbf{W}^+ \to \mu^+ \nu$

Control region eta binned results in a log scale for ${f W}^- o \mu^- ar u$

