H→bb (VH, ggH, VBF)

A. de Wit on behalf of the CMS and ATLAS collaborations

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Outline

- Introduction
 - Where have we come from? What questions are we still trying to answer?

- VBF, H→bb
- ggH, H→bb
- VH, H→bb
- Summary and outlook

Introduction

- A Higgs boson was discovered by the ATLAS and CMS collaborations in July 2012
 - The mass of the Higgs boson is known to be ~125 GeV
- H→bb̄: largest branching ratio: 58%
- Large multijet background makes inclusive study in this channel challenging → coupling of Higgs boson to b-quarks not established yet!

JHEP08(2016)045 Where did we come from? Where are we going?

- Combining 7+8 TeV ATLAS and CMS Higgs results yielded a best-fit $\mu_{b\bar{b}}=\sigma^*BR/(\sigma_{SM}*BR_{SM}) = 0.7^{+0.29}_{-0.27}$
- Observed (expected) significance of 2.6σ (3.7σ)
- With the growing LHC dataset, we are increasingly moving in the direction of precision Higgs measurements
 - Current focus is on firmly establishing the H→bb̄ decay as a stepping stone on the way
 - Precision measurements of the Higgs-b quark coupling are essential: H→bb gives the largest contribution to the total N Higgs width → all other branching ratios depend on BR(H→bb)
- Precision measurements will tell us if we're dealing with the SM H boson... or if there's more!

VBF H→bb

Overview

- Unique VBF topology of 2 quark jets with large rapidity gap → signature for online event selection
- In ATLAS, a VBF + γ signature is employed → Trade ~60 x smaller production cross section for presence of photon which can be used to cleanly trigger on and reduces backgrounds:
 - no photon radiation in gluon-gluon induced background
 - destructive interference between diagrams with photon radiation from initial- and final state quarks.
- Challenge: model the still very large multijet background

ATLAS	CMS
Partial 2016	2015 dataset
dataset (12.6 fb ⁻¹)	(2.3 fb ⁻¹)

Η

W/Z

W/Z

CMS-PAS-HIG-16-003

M_H = 125 GeV

PEAK = 122.6 FWHM = 32.1

PEAK = 116.9

FWHM = 33.0

200

M_{bb} (GeV)

250

DoubleB selection — Regressed + FSR

13 TeV

CMS Preliminarv

100

150

^q Mp/Np × 0.1 0.08

0.06

0.04

0.02

50

VBF - CMS

- Target inclusive VBF topology: selection of events with VBF topology plus b-tagged jet(s) → multi-jet trigger challenging to maintain in high-PU environment
- Improve m_{bb} resolution using multivariate regression techniques
- **Categorisation**: use BDTs trained with variables that are weakly correlated with bb kinematics and use the BDT output to define categories
- Fit the mbb distribution simultaneously in all categories to extract signal (major backgrounds fit to data analytically)
- Result: observed (expected) upper limit 3.0*SM (5.0*SM)

VBF - ATLAS

- Target VBF+γ topology: online selection of a photon and at least 4 jets. Offline require 2 central b-tagged jets and 2 jets consistent with VBF signature
- **Categorisation:** use a BDT to separate signal and background, ensuring that the BDT variables are weakly correlated with the kinematics of the bb system
- Fit the m_{bb} distribution in all categories simultaneously (major backgrounds fit to data analytically)
- Result: observed (expected) upper limit 4.0*SM (6.0*SM)
- Setup also used to search for Z(bb̄)+γjj production: observed (expected) upper limit 2.0*SM (1.8*SM)
 ATLAS Preliminary Data

ggH, H→bb̄ _{Overview}

- Largest production cross section, but suffers from overwhelming background from heavy flavour multijet production
 - Up to recently a search for ggH production in the H→bb̄ decay channel would have been deemed impossible...
- At high H p_T the two b-jets are likely to merge into a single 'fat' jet → exploit di-b jet substructure to make an inclusive H→bb̄ search at high H p_T possible

ATLAS	CMS
-	Full 2016 dataset (35.9 fb ⁻¹)

PRL 120(2018) 071802

Inclusive (ggH) H→bb̄

- Require a high p_T (>450 GeV) wide-cone jet
 - Exploit 2-prong jet substructure and b-tagging information of the sub-jets to reduce multijet background

→ largest acceptance (75%) for ggH production, but other modes taken into account too

- Remove soft radiation from candidate jet to provide better separation between signal and multijet background with the jet mass shape
- Major backgrounds from multijet production, with smaller contributions from tt, W, and Z production
 - Multijet background estimated from a data sample with inverted double-b tag requirement in a simultaneous fit with the signal region
- Validation of the method: extract Z(bb) production cross section times branching ratio:
 - µ_Z = 0.78 ± 0.14 (stat) -0.13 (syst) → observed (expected) significance of 5.1σ (5.8σ). First observation of Z(bb̄) in single-jet topology!
- **Results**: $_{\pm 1.0}$ $\mu_{H} = 2.3 \pm 1.5 \text{ (stat.) }_{-0.4} \text{ (syst.)} \rightarrow \text{observed (expected)}$ significance of $1.5\sigma(0.7\sigma)$

VH,H→bb̄

Overview

- Higgs boson produced in association with a vector boson
 - Leptonically decaying vector boson gives a clean signature to tag → helpful for online selection
 - Reduced background from multijet production
- Most sensitive channel for H→bb̄ studies despite smaller cross-section than gluon fusion and VBF production

ATLAS	CMS
Full 2015+2016 dataset (36 1 fb-1)	Full 2016 dataset (35.9 fb-1)

VH - ATLAS

Analysis strategy

- Select events with 0, 1 or 2-leptons (e/µ), consistent with W/Z decay, and 2 b-tagged jets
- Categorisation based on V p_T and number of jets
- **Improve** the m_{bb} resolution using jet corrections
 - μ -in-jet: accounts for b/c \rightarrow μ decays not depositing full energy in calorimeter
 - **PtReco:** correction to jet response based on difference between reconstructed b-jets and MC truth jets
 - **Kinematic fit (2 lepton channel):** exploit transverse momentum balance of the ZH(IIbb) decay to improve jet resolution
- Use BDTs to increase the separation between signal and background
 - Variables include V p_T, m_{bb}, jet kinematics,...
- **Fit** for signal using the BDT output as final discriminant, simultaneously fitting control regions to constrain some of the backgrounds
- Validate the analysis strategy using a di-boson analysis and an analysis using mbb as discriminating variable

	0-lej	oton	1-le	oton	2-lepton			
V р _т	> 1 Ge	50 eV	> 1 Ge	50 eV	75- G	150 eV	> 1 Ge	150 eV
Njets	2	3	2	3	2	≥3	2	≥3

DESY.

JHEP 12 (2017) 024

JHEP 12 (2017) 024

√s=7 TeV, 8 TeV, and 13 TeV

+0.45

+0.35

+0.28

5

1.21

0.69

0.90

4

(L dt=4.7 fb⁻¹, 20.3 fb⁻¹, and 36.1 fb⁻¹

(Tot.) (Stat., Syst.)

+0.30 +0.34

-0.29 , -0.30

+0.27 +0.23

+0.18 +0.21

-0.18 , -0.19

6

-0.26 , -0.21

ATLAS

WH

ΖH

Comb.

_1

Total

1.0

1

0

VH, H(bb)

-Stat.

2

3

VH - ATLAS

Results

DESY.

- Best-fit signal strength μ = 1.20 ^{+0.24}_{-0.23} (stat) ^{+0.34}_{-0.28}(syst) → observed (expected) significance 3.5σ (3.0σ)
- Combining the results with Run 1: μ=0.9±0.18(stat.) ^{+0.21}_{-0.19}(syst.) → observed (expected) significance 3.6σ (4.0σ)

→Results compatible with SM H expectation

Cross check results:

VZ(bb) analysis: μ_{VZ} =1.11 $^{+0.12}_{-0.11}$ (stat.) $^{+0.22}_{-0.19}$ (syst.) m_{bb} analysis: μ =1.30 $^{+0.28}_{-0.27}$ (stat.) $^{+0.37}_{-0.29}$ (syst.)

VH - CMS Strategy

- Select events with 0, 1 or 2-leptons (e/µ), consistent with W/Z decay, and 2 b-tagged jets
- Categorisation based on V-boson p_T
- **Improve** the m_{bb} resolution using multivariate regression techniques
- Use BDTs to increase the separation between signal and background
 - Variables include V p_T, m_{bb}, other jet and di-jet kinematics,...
- **Fit** for signal using the BDT output as final discriminant, simultaneously fitting control regions to constrain some of the backgrounds
- Validate the analysis strategy using a di-boson analysis

	0-lepton	1-lepton	2-lep	oton
Vрт	> 170	> 100	50-150	> 150
	GeV	GeV	GeV	GeV

PLB 780 (2018) 501-532

VH - CMS

Background normalisation

- Background normalisation constrained in the fit for major backgrounds (tt, Z+heavy flavour, Z+light flavour, W+heavy flavour, W+light flavour)
- Always constrained via control regions
- In control regions, fit the btagging discriminant of the least b-tagged signal jet

VH - CMS

Results

10⁶

E CMS

DESY.

- Best-fit signal strength $\mu = 1.19 + 0.21 + 0.34 + 0.34 + 0.32$ (syst) \rightarrow observed (expected) significance 3.3 σ (2.8 σ)
- Combining the results with Run 1: ٠ μ =1.06 $_{-0.29}^{+0.31}$ (stat+syst.) \rightarrow observed (expected) significance 3.8σ (3.8σ)

35.9 fb⁻¹ (13 TeV)

10⁶

CMS

VZ cross-check analysis: ٠ $\mu_{VZ} = 1.02 \pm 0.22$ (stat+syst)

Data

Data

VH(bb

VH - uncertainty contributions

JHEP 12 (2017) 024 PLB 780 (2018) 501-532

ATLAS

Source of un	certainty	σ_{μ}		
Total		0.39		
Statistical		0.24		
Systematic		0.31		
Experimenta	l uncertainties			
Jets		0.03		
$E_{\rm T}^{\rm miss}$		0.03		
Leptons		0.01		
	b-jets	0.09		
b-tagging	c-jets	0.04		
	light jets	0.04		
	extrapolation	0.01		
Pile-up		0.01		
Luminosity		0.04		
Theoretical a	and modelling un	certainties		
Signal	ing modeling an	0.17		
~181101		0.111		
Floating nor:	malisations	0.07		
Z + jets		0.07		
W + jets		0.07		
$t\bar{t}$		0.07		
Single top quark		0.08		
Diboson		0.02		
Multijet		0.02		
MC statistic	al	0.13		

CMS

		Individual contribution	Effect of removal to
Source	Type	to the μ uncertainty (%)	the μ uncertainty (%)
Scale factors ($t\bar{t}$, V+jets)	norm.	9.4	3.5
Size of simulated samples	shape	8.1	3.1
Simulated samples' modeling	shape	4.1	2.9
b tagging efficiency	shape	7.9	1.8
Jet energy scale	shape	4.2	1.8
Signal cross sections	norm.	5.3	1.1
Cross section uncertainties	norm.	4.7	1.1
(single-top, VV)			
Jet energy resolution	shape	5.6	0.9
b tagging mistag rate	shape	4.6	0.9
Integrated luminosity	norm.	2.2	0.9
Unclustered energy	shape	1.3	0.2
Lepton efficiency and trigger	norm.	1.9	0.1

- In both ATLAS and CMS a large component of the uncertainty on the measured signal strength is statistical
- Large systematic uncertainties
 - Main contributions to systematic uncertainty not always the same between two experiments

Summary & outlook

- H→bb̄ decays are actively being studied in the VBF, gluon fusion and VH production modes at the LHC
- Results discussed:

	95% upper limit obs(exp)			
	ATLAS	CMS		
VBF (13 TeV)	<4.0*SM (<6.0*SM)	<3.0*SM (<5.0*SM)		
	Best-fit µ		Significance obs(exp)	
	ATLAS	CMS	ATLAS	CMS
ggH (13 TeV)	-	2.3 ± 1.5 (stat) ^{+1.0} _{-0.4} (syst.)	-	1.5σ (0.7σ)
VH (13 TeV)	1.20 ^{+0.24} _{-0.23} (stat) ^{+0.34} _{-0.28} (syst)	1.19 ^{+0.21} _{-0.20} (stat) ^{+0.34} _{-0.32} (syst)	3.5σ (3.0σ)	3.3σ (2.8σ)
VH (Run1&2)	0.90±0.18 (stat) ^{+0.21} _{-0.19} (syst)	1.06 ^{+0.31} _{-0.29} (stat+syst)	3.6σ (4.0σ)	3.8σ (3.8σ)

- Results from ATLAS and CMS compatible with each other, best-fit signal strengths compatible with the SM, $\mu\text{=}1$
- An additional ~40 fb⁻¹ already collected during the 2017 LHC run, and the machine is just starting up ready for the 2018 run
 - Exciting times ahead for studies in the H→bb decay mode, with precision measurements visible on the horizon

VH

BDT inputs

ATLAS

Variable	0-lepton	1-lepton	2-lepton		
p_{T}^{V}	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	Х	×		
$E_{\mathrm{T}}^{\mathrm{miss}}$	Х	×	×		
$p_{\mathrm{T}}^{b_1}$	×	×	×		
$p_{\mathrm{T}}^{b_2}$	×	×	×		
m_{bb}	×	×	×		
$\Delta R(ec{b}_1,ec{b}_2)$	×	×	×		
$ \Delta\eta(ec{b}_1,ec{b}_2) $	×				
$\Delta \phi (ec V, b ec b)$	×	×	×		
$ \Delta\eta(ec V, bec b) $			×		
$m_{ m eff}$	Х				
$\min[\Delta \phi(ec{\ell},ec{b})]$		×			
$m_{ m T}^W$		×			
$m_{\ell\ell}$			×		
$m_{ m top}$		×			
$ \Delta Y(ec V, bec b) $		×			
	Only in 3-jet events				
$p_{\mathrm{T}}^{\mathrm{jet_3}}$	×	×	×		
m_{bbj}	×	×	×		

CMS

Variable	Channels
variable	utilizing
M(ii): dijet invariant mass	Δ11
$\frac{m_{\rm r}(jj)}{m_{\rm r}(ij)}$ dijet transverse momentum	
$\frac{p_{T}(y)}{r_{T}(y)}$, ujet transverse momentum	
$\frac{p_{\rm T}(v)}{CMVA}$, value of CMVA for the Higgs become daughter	2 lantan 0 lantan
with largest CSV value	2-iepton, 0-iepton
CMVA _{min} : value of CMVA for the Higgs boson daughter	All
with second largest CSV value	
CMVA _{add} : value of CMVA for the additional jet	0-lepton
with largest CSV value	1
$\Delta \phi(V, H)$: azimuthal angle between V and dijet	All
$p_{\rm T}(j)$: transverse momentum	2-lepton, 0-lepton
of each Higgs boson daughter	
$p_{\rm T}({\rm add.})$: transverse momentum	0-lepton
of leading additional jet	
$ \Delta \eta(jj) $: difference in η	2-lepton, 0-lepton
between Higgs boson daughters	
$\Delta R(jj)$: distance in $\eta - \phi$	2-lepton
between Higgs boson daughters	
N _{aj} : number of additional jets	1-lepton, 2-lepton
N.B. definition slightly different per channel	
$p_{\rm T}(\rm jj)/p_{\rm T}(\rm V)$: $p_{\rm T}$ balance between Higgs boson	2-lepton
candidate and vector boson	
: Z boson mass	2-lepton
SA5: number of soft activity jets	All
with $p_{\rm T} > 5 {\rm GeV}$	
<i>M</i> _t : reconstructed top quark mass	1-lepton
$\Delta \phi(E_{\rm T}^{\rm miss}, \ell)$: azimuthal	1-lepton
angle between $E_{\rm T}^{\rm miss}$ and lepton	
<i>E</i> ^{miss} _T : missing transverse energy	1-lepton, 2-lepton
$m_T(W)$: W transverse mass	1-lepton
: difference in ϕ	0-lepton
between Higgs boson daughters	
$\Delta \phi(E_{\rm T}^{\rm miss}, {\rm jet.})$: azimuthal	0-lepton
angle between $E_{\rm T}^{\rm miss}$ and the closest jet with $p_{\rm T} > 30 {\rm GeV}$	