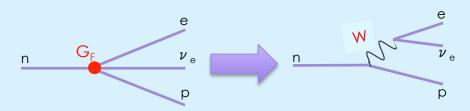
Searching for new physics in the Higgs, Top and Electroweak sectors in EFT frameworks

ALPS 2018, Obergurgl

this talk

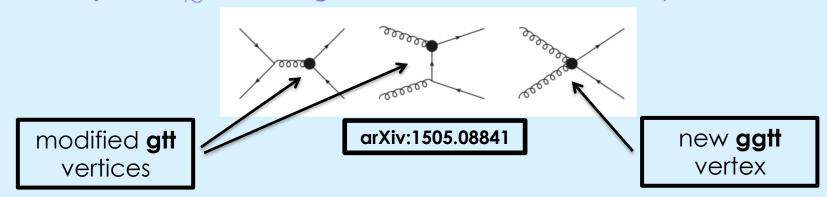
- why EFT?
 - the basic idea
 - general theoretical and experimental considerations

- the status of efforts to constrain new physics in EFT
 - a selection of Higgs, Top and Electroweak experimental results
 - focusing on 13 TeV measurements including EFT interpretation
 - also highlight some results that could be reinterpreted


outlook

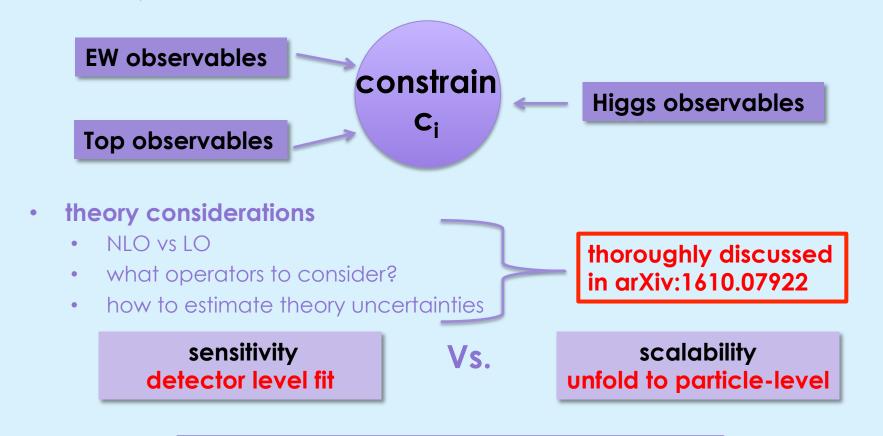
11/04/18

the search for new physics


- no new BSM light particles observed at the LHC sofar...
- why? is the NP scale (Λ_{NP}) far larger than the LHC scale?
- extend the SM Lagrangian with higher-order operators to model NP @ $\Lambda_{
 m NP}$

famous example of Fermi theory of Beta decay

$$\mathcal{L}_{SM}^{(6)} = \mathcal{L}_{SM}^{(4)} + \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i + \dots$$


LHC example - Ota affecting rate and kinematics of the production

searching for new particles → searching for new interactions

why EFT?

- well-defined parameterisation of array of new physics
- model-independent
- but for EFT to make sense, *all* operators must be considered together
- long term goal: (semi) global analyses to simultaneously constrain many c_i using multiple measurements

EFT in the Higgs sector

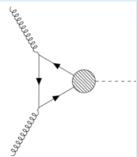
rich Higgs phenomenology at the LHC

- multiple production and decay modes
- diverse experimental signatures

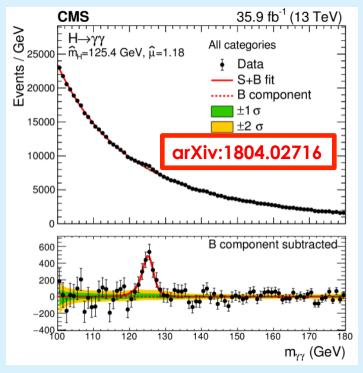
many observables to measure

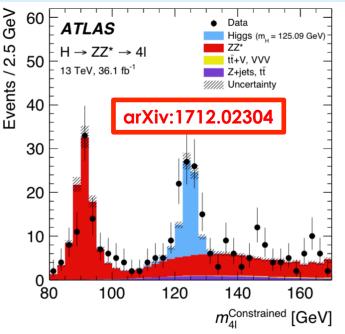
- inclusive cross sections, fiducial rates,
- rates by production mode, decay mode

large statistics → detailed studies


- (double) differential cross sections
- jet activity in higgs production
- rare production modes accessible ttH

observables affected by EFT operators

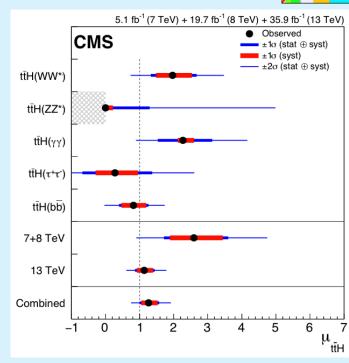

- rescaling of rates
- deformations of distribution shapes

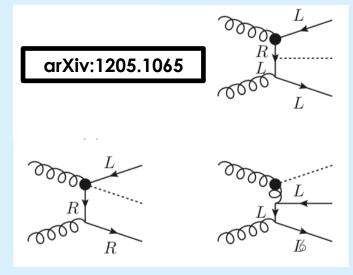

example

operator modifies the top loop in gg Higgs production mode

J. Phys.: Conf. Ser. 878 012020

ttH observation


NEW arXiv:1804.02610



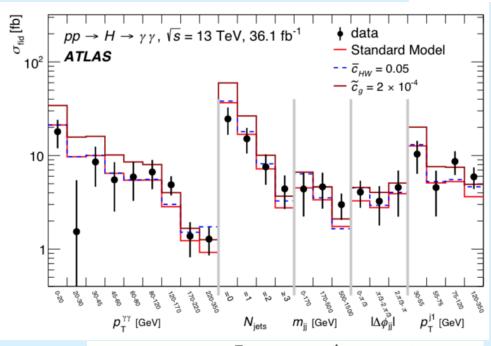
- observation of ttH @ 7 + 8 + 13 TeV
- significance across H decay channels and COM energies:
 - 5.2 σ (obs.), 4.2 σ (exp.)
- signal strength (relative to SM) $\mu = 1.26_{0.26}$
- signal strength in all decay channels consistent with SM
- important milestone paves the way for more detailed measurements

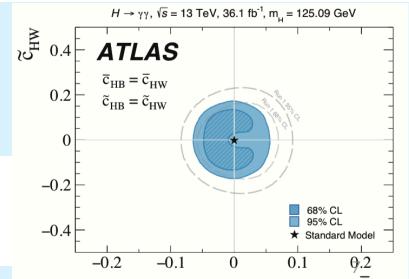
consequences for EFT

- dim-6 operators O_{hg} , O_{HG} , $O_{H_{J}}$ O_{Hy} contribute to ttH production at tree-level
- O_{H.} O_{Hv} affect ttH rate,
 - can already be constrained
- O_{hg}, O_{HG} alter distribution shapes
 - can be constrained with more detailed future measurements

$H \rightarrow \gamma \gamma$

NEW arXiv:1802.04146

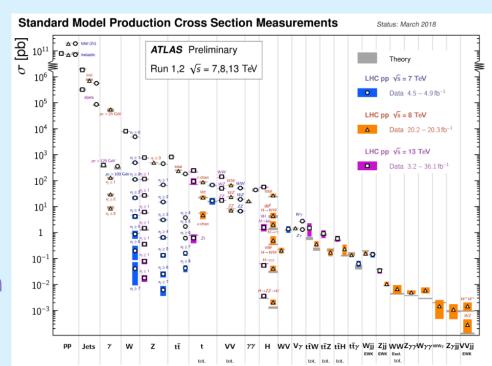


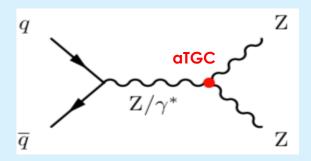

- H-> $\gamma \gamma = 0.13 \text{ TeV with } 36.1 \text{fb}^{-1}$
- large stats allow detailed measurements
- signal strength $\mu = 0.99^{+0.15}_{-0.14}$
- diff. results agree with SM

EFT reinterpretation

- dim-6 operators
 - O_g, Õ_g → ggH interactions
 - O_{HW} , \tilde{O}_{HW} \rightarrow HWW, HZZ, HZ γ interactions
 - shape + rate changes
 - O_{HB} , \widetilde{O}_{HB} \rightarrow HZZ, HZ γ interactions
- diff. distributions constrain associated c_i

Coefficient	Observed 95% CL limit	Expected 95% CL limit
\bar{c}_g	$[-0.8, 0.1] \times 10^{-4} \cup [-4.6, -3.8] \times 10^{-4}$	$[-0.4, 0.5] \times 10^{-4} \cup [-4.9, -4.1] \times 10^{-4}$
$ ilde{c}_g$	$[-1.0, 0.9] \times 10^{-4}$	$[-1.4, 1.3] \times 10^{-4}$
\bar{c}_{HW}	$[-5.7, 5.1] \times 10^{-2}$	$[-5.0, 5.0] \times 10^{-2}$
\tilde{c}_{HW}	[-0.16, 0.16]	[-0.14, 0.14]




EFT in the electroweak sector

- large stats. @ LHC allow EW studies in great detail
- rare EW processes measured
 e.g. EW V+jets, EW ZZ, same sign WW
- sufficient stats for differential measurements in some cases
- subtle effects of NP in multiboson events

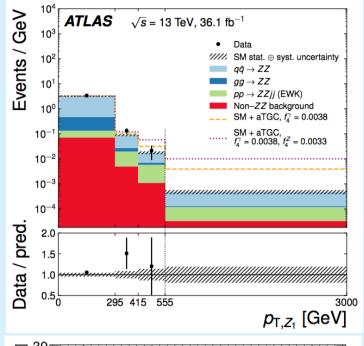
Triple-Gauge-Couplings (TGC)

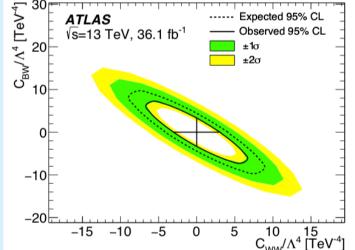
- fixed in SM
- aTGC in EFT increases cross section especially at large energy scales
- diboson and Higgs production are related in EFT

ZZ production

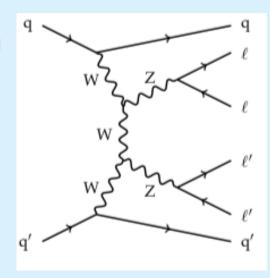
- inclusive and differential ZZ cross sections at 13 Tev with 36.1fb⁻¹
- 4I final state
- differential cross sections for a range of observables

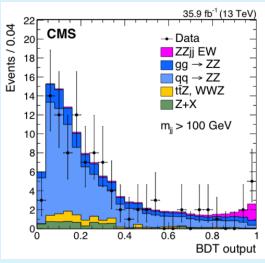
EFT reinterpretation


- aTGC vertex forbidden in SM
 - enhanced in BSM @ large energy scales
- leading Z P_T distribution constrains aTGC
- data consistent with no aTGC

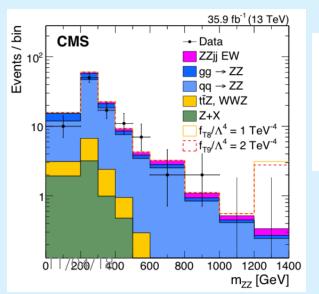

EFT parameter	Expected 95% CL [TeV ⁻⁴]	Observed 95% CL [TeV ⁻⁴]
$C_{ ilde{B}W}/\Lambda^4$	-8.1, 8.1	-5.9 , 5.9
C_{WW}/Λ^4	-4.0, 4.0	-3.0, 3.0
C_{BW}/Λ^4	-4.4, 4.4	-3.3, 3.3
C_{BB}/Λ^4	-3.7, 3.7	-2.7 , 2.8

EFT coefficients constrained individually 11/04/18


EFT coefficients constrained in pairs


EW ZZ production

arXiv:1708.02812


- measurement of EW production of ZZ+2jets @ 13 TeV with 35.9fb⁻¹
 - four lepton + 2jet final state
 - BDT discriminant distinguishes
 QCD and EW processes
 - signal extracted with 2.7 σ
 significance
 - fiducial cross section result consistent with SM

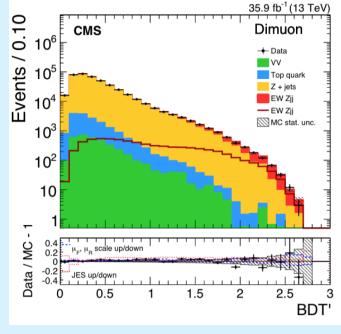
EFT reinterpretation

• m_{ZZ} distribution used to constrain EFT parameters f_{Ti}/Λ^4 describing aQGC

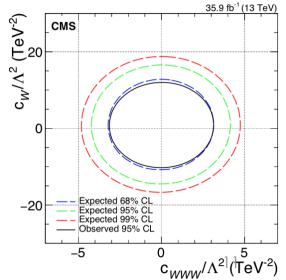
Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$	-0.53	0.51	-0.46	0.44	2.5
$f_{\rm T1}/\Lambda^4$	-0.72	0.71	-0.61	0.61	2.3
$f_{\rm T2}/\Lambda^4$	-1.4	1.4	-1.2	1.2	2.4
$f_{\rm T8}/\Lambda^4$	-0.99	0.99	-0.84	0.84	2.8
$f_{\mathrm{T9}}/\Lambda^4$	-2.1	2.1	-1.8	1.8	2.9

- coefficients constrained individually
 - most precise constraints to date
- first results on EW ZZ production

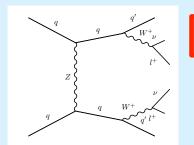
EW Z+2jet


arXiv:1712.09814

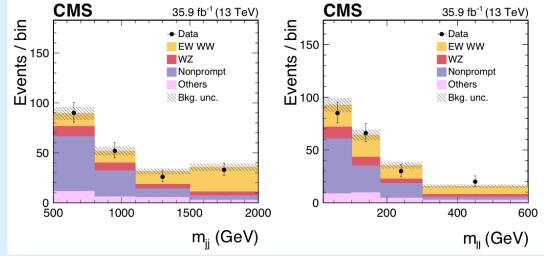



- EW Z+2jet @ 13 TeV with 35.9fb⁻¹
 - 2 lepton + 2 jet final state
 - BDT discriminant distinguishes Drell-Yan and signal
 - cross section extracted from fit to BDT
 - result consistent with SM

EFT reinterpretation


- P_{TZ} distribution used to constrain EFT parameters c_{WWW}/Λ^2 , c_W/Λ^2
- results consistent with SM
- parameters constrained individually and in pair

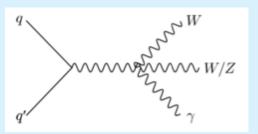
same sign WW



arXiv:1709.05822

measurement of same-sign WW @ 13 TeV with 35.9fb⁻¹

- 2 SS lepton + 2 jet + MET
- signal extracted with 5.5σ
- result consistent with SM
- first observation of SS WW


EFT reinterpretation

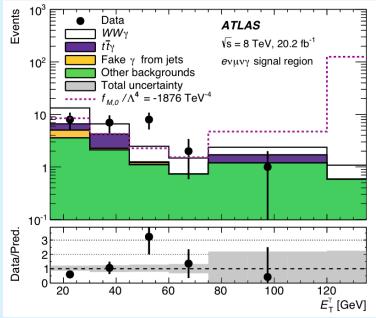
- m_{II} distribution used to constrain dim-8 EFT operators
- independently constrain 9 c_i
- bounds improved by up to factor of 6 on previous results

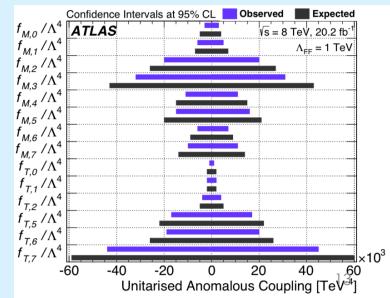
	Observed limits	Expected limits	Previously observed limits
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
f_{S0}/Λ^4	[-7.7, 7.7]	[-7.0, 7.2]	[-38,40] ,[11]
$f_{\rm S1}/\Lambda^4$	[-21.6, 21.8]	[-19.9, 20.2]	[-118, 120] , $[11]$
$\mathrm{f_{M0}}/\Lambda^4$	[-6.0, 5.9]	[-5.6, 5.5]	[-4.6, 4.6] , [36]
$f_{\rm M1}/\Lambda^4$	[-8.7, 9.1]	[-7.9, 8.5]	[-17, 17] , [36]
$f_{ m M6}/\Lambda^4$	[-11.9, 11.8]	[-11.1, 11.0]	[-65,63] , [11]
$f_{ m M7}/\Lambda^4$	[-13.3, 12.9]	[-12.4, 11.8]	[-70,66] , [11]
f_{T0}/Λ^4	[-0.62, 0.65]	[-0.58, 0.61]	[-0.46, 0.44] , [37]
f_{T1}/Λ^4	[-0.28, 0.31]	[-0.26, 0.29]	[-0.61, 0.61] , $[37]$
f_{T2}/Λ^4	[-0.89, 1.02]	[-0.80, 0.95]	[-1.2, 1.2] , $[37]$

11/04/18

WWY, WZY

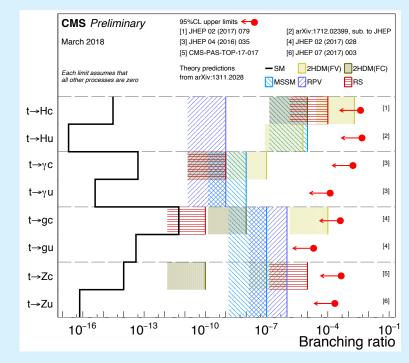
search for WWy WZy production @ 8TeV with 20.2fb⁻¹


- e, mu, γ, 2 jet, MET
- fiducial region defined to be optimal wrt aQGC effects
- backgrounds determined from control regions
- upper limit placed on cross sections in optimal fiducial region for BSM

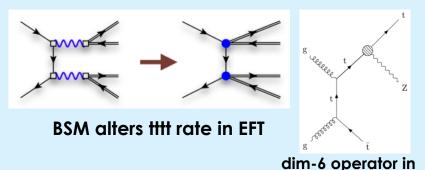

EFT reinterpretation

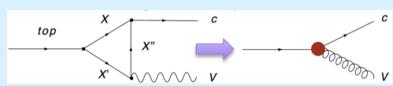
- upper limit used to constrain dim-8 EFT
- aQGC affect fiducial rates
- independently constrain 14 c_i
 describing anomalous WWZy and WWyy
- results consistent with SM

arXiv:1707.05597


EFT in the top sector

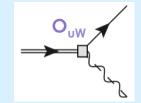
top observables at the LHC


- tt > precision regime: percent level incl. cross section, multi-differential, jet spectra, charge asymmetries, spin correlations
- single-top > detailed diff measurements: tchannel, tW, tZq channels,
- **ttV** -> observed, first inclusive measurements
- tttt -> approaching observation
- FCNC decays -> upper limits at the 10⁻⁵ level


EFT in top

- many top observables modified in EFT
- both rate increase and shape deformations
- interplay with Higgs sector in ttH, tttt and FCNC
- NLO QCD EFT predictions for many observables already available
- suggested "common standards" from theory experts
 arXiv:1802.07237

limits on FCNC branching rations @ 8TeV



ttZ production

BSM loop modifying Br(FCNC) in EFT

top FCNC decays

NEW arXiv:1803.09923

- t->uZ, t->cZ decays @ 13 TeV with 36.1 fb⁻¹
- anomalous t->uZ, t->cZ branching ratios is a feature of BSM scenarios
- strategy
 - tt events where one top decays to uZ, or cZ
 - require 3 leptons, 2 jets, 1 b-tag and MET
 - kin. reco. to find t->uZ or t->cZ decays
 - binned likelihood fit to kinematic distributions

result- no evidence of t->uZ, t->cZ decays

upper limits on branching ratios @ 95% CL

$$Br(t\to UZ) < 1.7 \times 10^{-4}$$

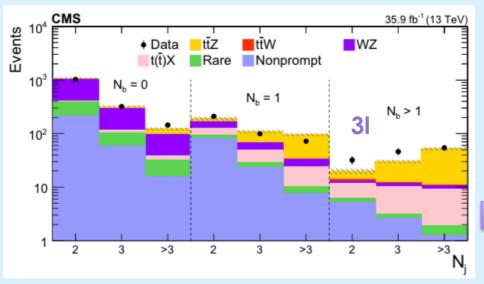
 $Br(t\to CZ) < 2.4 \times 10^{-4}$

interpretation in TopFCNC EFT model arXiv:1412.5594

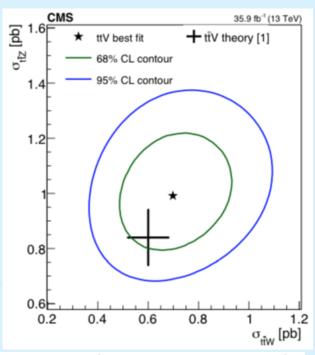
on-zero value

assume only one operator has non-zero value

Events / 1.0	10 5	ATLAS S = 13 T CR+SR fi Signal Re Post-Fit	$t (\mu = 0)$			tt̄→ b	prompt WuZ 0.017%	
	20			D <mark>i</mark> llilli				
Data / Bkg	1.4 1.2 1 0.8 0.6	2	4	6	8	10	12	14 χ^2


Operator	Observed	Expected
$ C_{uB}^{(31)} $	0.25	0.30
$ C_{uW}^{(31)} $	0.25	0.30
$ C_{uB}^{(32)} $	0.30	0.34
$ C_{uW}^{(32)} $	0.30	0.34

arXiv:1711.02547



- measurement of tt+Z and tt+W cross sections at 13 TeV with 35.9 fb⁻¹
- tt + V rates increased in NP scenarios
 - same-sign dileptons -> <u>optimal for tt+W</u>
 - 3, 4 leptons -> <u>optimal for tt+Z</u>
 - BDT discriminator in same-sign dilepton

fit across categories to extract $\sigma_{\rm ttW}$ and $\sigma_{\rm ttZ}$

- 8 c_i independently constrained
- results consistent with SM

Wilson coefficient 68% CL [TeV⁻²] 95% CL [TeV⁻²] $\bar{c}_{\rm uW}/\Lambda^2$ -1.6, 1.5-2.2, 2.2 $|\bar{c}_{\rm H}/\Lambda^2 - 16.8 \, {\rm TeV}^{-2}|$ [3.7, 23.4][0,28.7] $\widetilde{c}_{3G}/\Lambda^2$ -0.5, 0.5-0.7, 0.7 \bar{c}_{3G}/Λ^2 -0.3, 0.7-0.5, 0.9 \bar{c}_{uG}/Λ^2 -0.9, -0.8] and [-0.3, 0.2]-1.1, 0.3 $|\bar{c}_{\rm uB}/\Lambda^2|$ [0, 1.5][0, 2.1]-9.2, -6.5] and [-1.6, 1.1] $\bar{c}_{\rm Hu}/\Lambda^2$ -10.1, 2.0 \bar{c}_{2G}/Λ^2 -0.9, 0.6[-0.7, 0.4]

summary and outlook

- EFT provides a model-independent framework in which to search for subtle hints of new physics at the LHC
- facilitates the simultaneous usage of Top, Higgs and EW data in global analysis
- global analysis becoming more feasible with wealth of Higgs, EW and Top measurements
- many analyses from ATLAS and CMS appearing with stand-alone EFT reinterpretations
 - so far no hints of new physics
- particle-level, fiducial measurements crucial to move towards desired global analysis