

Yiwen Wen on behalf of CMS collaboration DESY Kobe, DIS2018, 2018.04.17

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Overview

decay of the Higgs boson

in Run-I, a 125 GeV Higgs boson was discovered by CMS and ATLAS

- based on the bosonic decay channel: γγ, ZZ and WW
- the properties measured so far are consistent with SM

SM also predicts fermonic decay of Higgs boson

- large branching ratios for bb and tautau
- analysis less sensitive due to overwhelming background
- observation of Higgs to fermions decays is crucial to test Yukawa coupling

35.9/fb, full 2016 data

- observation of H to tau tau (Phys. Lett. B 779 (2018) 283)
- evidence for VH, H to bb (Phys. Lett. B 780 (2018) 501)
- search for boosted H to bb (Phys. Rev. Lett. 120 (2018) 071802)
- search for H to µµ (CMS-PAS-HIG-17-019)

DESY. | SM Higgs to fermions | Yiwen Wen, 2018.4.17

observation of H to tau tau

Phys. Lett. B 779 (2018) 283

advantage to study Yukawa coupling: higher event rate than Higgs to mumu and less backgrounds than Higgs to bb

hadron plus strip algorithm to identify hadronic tau decay modes

exploit the new developments of hadronic tau id and triggers since Run-I:

- dynamic strip reconstruction, strip size adjusted dynamically as a function of the pT of e/γ
 - better acceptance at low pT, better jet rejection at high pT
- MVA-based discriminator rejecting jet faking tau
- L1 trigger upgraded:
 - increases the algorithm complexity and the readout granularity
 - improving hadronic tau-id with dynamic clustering technique at the hardware level
 - maintaining the same pT threshold as Run-I but improve the turnon and efficiency despite of high pile-up

observation of H to tau tau

Phys. Lett. B 779 (2018) 283

analysis strategies

cover four channels of di-tau decay

3 event categories focused on two most sensitive production mode ggH and VBF:

- **0-jet**: targeting ggH and allowing for systematics to be constrained in other categories
- **VBF**: targeting VBF production by requiring mjj cut
- **boosted**: targeting ggH events with a Higgs recoiling against a jet

two dimensional distributions for signal extraction

0.5

0.4

0.3

0.2

0.1

6%

42%

23% 23%

6%

observation of H to tau tau

Phys. Lett. B 779 (2018) 283

visualizations of signals

observation of H to tau tau

Phys. Lett. B 779 (2018) 283

- 4.9(4.7)σ observe (expected) significance
- 5.9σ observed significance when combining Run-I and Run-II (7+8+13 TeV)

DESY. | SM Higgs to fermions | Yiwen Wen, 2018.4.17

evidence for VH, H to bb

Phys. Lett. B 780 (2018) 501

analysis strategies

- highly suppress QCD BG because of requiring the presence of of a vector boson
- also providing an efficient trigger path when it leptonically decays
- **Higgs candidate** is required to have pT>100 GeV
 - 1. reduces large backgrounds from W+jets, DYJets and top
 - 2. makes accessible the Z(vv)H channel via large missing transverse energy
 - 3. improves mass resolution of the Higgs candidate

Z(II)H(bb), 2 leptons

- cleanest channel due to the requirement of two leptons to tag the event
- further divided into low and high pT(V) region
- lower statistics due to relatively low Z→II branching fraction

W(lv)H(bb), 1 lepton

- requires one lepton in the final state as well as MET
- large background contributions from top and W+jets

Z(vv)H(bb), 0 lepton

- triggers include b-tagging and require large MET
- QCD is negligible

evidence for VH, H to bb

Phys. Lett. B 780 (2018) 501

- using **BDT** output to discriminate signals and background
- control regions helped to scale the yield of BG are defined with multiple additional cuts including: •
 - number of jets, number of b-tagged jets, mjj, Z mass window
- maximum likelihood fit is performed for all categories simultaneously to extract the signal •

the combined best-fit signal ٠ strength is

> $\mu = 1.19 \pm 0.21$ (stat.) \pm 0.33(syst.)

- $3.3(2.8)\sigma$ observed ٠ (expected) significance
- **3.8σ observed** ٠ significance when combining Run-I and Run-II (8+13 TeV)

search for boosted H to bb

Phys. Rev. Lett. 120 (2018) 071802

analysis strategies

- inclusive production of H->bb usually considered inaccessible due to the overwhelming QCD background
- introduced a new idea "jet substructure" to perform the first inclusive search
- sensitivity gained in a high pT(H) region for pt>450 GeV
- selected H->bb candidate recoiling against ISR jets and veto electron/muon/taus/MET

search for boosted H to bb

Phys. Rev. Lett. 120 (2018) 071802

selecting H to bb candidate

- exploit the jet-substructure techniques:
 - find 2-prong substructure in a fat jet
 - using double-b MVA tagger (33% efficiency for 1% fake rates for QCD) to identify 2 b-jets
 - jet grooming, to remove the soft and wide angle jet
- "soft-drop mass" of Higgs candidate as discriminant

search for boosted H to bb

Phys. Rev. Lett. 120 (2018) 071802

results

- first observation of Z->bb, 5.8σ !
- 1.5σ significance for H(bb)
- agrees with SM prediction

	Н	H no $p_{\rm T}$ corr.	Ζ
Observed signal strength	$2.3^{+1.8}_{-1.6}$	$3.2^{+2.2}_{-2.0}$	$0.78\substack{+0.23 \\ -0.19}$
Expected UL signal strength	< 3.3	< 4.1	
Observed UL signal strength	< 5.8	< 7.2	
Expected significance	0.7σ	0.5σ	5.8σ
Observed significance	1.5σ	1.6σ	5.1 <i>o</i>

Likelihood scan of Z Boson signal strength and Higgs Boson signal strength

search for H to µµ

CMS-PAS-HIG-17-019

motivation

- Higgs boson decay to pair of muons extends the study of its couplings to 2nd generation leptons
- benefit from good muon resolution

analysis strategies

- events from MC are used to train by BDT and its output will be used further to optimize event categorization
- variables:
 - dimuon variables to distinguish between ggH signal and DY background
 - jet variables to identify VBF signal
 - b-tagged jets most likely from top production

Index	BDT quantile	Max. muon η	ggH	VBF	WH	ZH	ttH	Signal	Bkg./GeV	FWHM	Bkg. functional	S/\sqrt{B}
			[%]	[%]	[%]	[%]	[%]		@125GeV	[GeV]	fit form	@ FWHM
0	0 - 8%	$ \eta < 2.4$	4.9	1.3	3.3	6.3	31.9	21.2	3150.5	4.2	mBW · B _{deg4}	0.12
1	8 - 39%	$1.9 < \eta < 2.4$	5.6	1.7	3.9	3.5	1.3	22.3	1327.5	7.3	mBW · B _{deg4}	0.16
2	8-39%	$0.9 < \eta < 1.9$	10.3	2.8	6.5	6.4	5.2	41.1	2222.2	4.1	mBW · B _{deg4}	0.29
3	8 - 39%	$ \eta < 0.9$	3.2	0.8	1.9	2.1	3.5	12.7	775.9	2.9	mBW · B _{deg4}	0.17
4	39 - 61%	$1.9 < \eta < 2.4$	2.9	1.7	2.7	2.7	0.3	11.8	435.0	7.0	mBW · B _{deg4}	0.14
5	39 - 61%	$0.9 < \eta < 1.9$	7.2	3.3	6.1	5.2	1.3	29.2	955.9	4.1	mBW · B _{deg4}	0.31
6	39 - 61%	$ \eta < 0.9$	3.6	1.1	2.6	2.2	0.9	14.5	479.3	2.8	mBW · B _{deg4}	0.26
7	61 - 76%	$1.9 < \eta < 2.4$	1.2	1.5	1.8	1.7	0.2	5.2	146.6	7.6	mBW · B _{deg4}	0.11
8	61 - 76%	$0.9 < \eta < 1.9$	4.8	3.6	4.5	4.4	0.7	20.3	514.3	4.2	mBW · B _{deg4}	0.29
9	61 - 76%	$ \eta < 0.9$	3.2	1.6	2.3	2.1	0.6	13.1	319.7	3.0	mBWຶ	0.28
10	76 - 91%	$1.9 < \eta < 2.4$	1.2	3.1	2.2	2.1	0.2	5.8	102.4	7.2	Sum Exp(n=2)	0.14
11	76 - 91%	$0.9 < \eta < 1.9$	4.4	8.7	6.2	6.0	1.1	20.3	363.3	4.2	mBW	0.34
12	76 - 91%	$ \eta < 0.9$	3.1	4.0	3.8	3.6	0.9	13.7	230.0	3.2	mBW · B _{deg4}	0.34
13	91 - 95%	$ \eta < 2.4$	1.7	6.4	2.5	2.6	0.5	8.6	95.5	4.0	mBW	0.28
14	95 - 100%	$ \eta < 2.4$	2.0	19.4	1.5	1.4	0.7	13.7	82.4	4.2	mBW	0.47
overall			59.1	61.1	51.8	52.3	49.2	253.3	12961.5	3.9		

search for H to µµ

CMS-PAS-HIG-17-019

signal modeling:

- a sum of up to three Gaussian functions
- good description of the distributions

background modeling:

- functions chosen separately for each category
- choice: based on minimizing the possible bias in the fitted signal yield

Bernsteins $(B_{deg n}):B(x) = \sum_{i=0}^{n} \alpha_i \left[\binom{n}{i} x^i (1-x)^{n-i} \right]$ Sum of exponentials (Sum Exp): $B(x) = \sum_{i=1}^{n} \beta_i e^{\alpha_i x}$ Breit-Wigner: $B(x) = \frac{e^{ax} \sigma_z}{(x-\mu_z)^2 + (\frac{\sigma_z}{2})^2}$ Modified Breit-Wigner (mBW): $B(x) = \frac{e^{a_2 x + a_3 x^2}}{(x-\mu_z)^{a_1} + (\frac{\sigma_z}{2})^{a_1}}$

search for H to $\mu\mu$

CMS-PAS-HIG-17-019

results

- no significant excess
- run-II: upper limit: 2.68 (2.08) times SM prediction, signal strength: $\mu = 0.7 \pm 1.0$
- run-I + run-II: upper limit: 2.68 (1.89) times SM prediction, signal strength: μ = 0.9 ± 1.0 and significance: 0.9σ

using Run-II 13 TeV data collected by CMS, analysis enthusiasts have been pushing Higgs decaying to fermions searches and measurements into new territory

- first observation of Higgs to fermion decay by a single experiment: Higgs to tau tau
- first analysis searching inclusively for Higgs to bb
- VH, H to bb showed us evidence for Higgs to bb decay
- updated search results of Higgs to mumu

more exciting results will be coming

- with 2017 data collected and the on-going 2018 data-taking, will reach ~100/fb in total for run-II
- new results will pop-up anytime in this link:

http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG/index.html

CMS-PAS-HIG-16-003

definitions of categories

	SingleB	DoubleB		
Trigger	one b-tagged jet	two b-tagged jets		
jets <i>p</i> _T	$p_{\rm T}^{1,2,3,4} > 92,76,64,30 { m GeV}$			
jets $ \eta $		<4.7		
b tag	no cut	two jets with CSV>0.5		
$\Delta \phi_{\rm bb}$	<1.6 radians	<2.4 radians		
	$m_{qq} > 460 \mathrm{GeV}$	$m_{\rm qq} > 200 {\rm GeV}$		
VBF topology				
	$ \Delta\eta_{ m qq} >4.1$	$ \Delta\eta_{ m qq} >1.2$		
Veto	None	Events that belong to SingleB		

		Sing	çleB	DoubleB			
BDT boundary values	Cat. 1	Cat. 2	Cat. 3	Cat. 4	Cat. 5	Cat. 6	Cat. 7
	0.28 – 0.72	0.72 - 0.87	0.87 – 0.93	0.93 – 1.0	0.36 – 0.76	0.76 – 0.89	0.89 – 1.0
Data	25298	5834	1281	302	69963	9831	1462
Z +jets	49 ± 4	12.5 ± 2.0	4.1 ± 1.1	1.7 ± 0.7	448 ± 11	50 ± 4	8.4 ± 1.7
W +jets	25.8 ± 3.5	1.6 ± 0.9	0.1 ± 0.1	< 0.1	74 ± 6	4.6 ± 1.3	0.9 ± 0.6
tī	53 ± 1	5.1 ± 0.2	0.7 ± 0.1	0.2 ± 0.04	534 ± 2	$22.6 {\pm}~0.4$	1.1 ± 0.1
Single t	52 ± 1	9.7 ± 0.5	1.8 ± 0.2	0.4 ± 0.1	221 ± 3	$23.2{\pm}~0.8$	1.8 ± 0.2
$\overline{\text{VBF } m_{\text{H}}(125)}$	19.5 ± 0.2	13.7 ± 0.1	7.2 ± 0.1	4.2 ± 0.1	$21.7{\pm}~0.2$	10.5 ± 0.1	3.8 ± 0.1
GF $m_{\rm H}(125)$	5.5 ± 0.2	1.8 ± 0.1	0.6 ± 0.07	0.2 ± 0.04	18.7 ± 0.4	3.1 ± 0.1	0.6 ± 0.07

CMS-PAS-HIG-16-003

VBF H-> bb signature

- 2 central b-jets
- 2 light q-jets with large Δη and m(jj)
- suppress color-flow between VBF jets

Analysis strategies

- topological triggers
- use BDT to exploit the difference between signals and QCD. BDT is orthogonal to b-jet kinematics
- perform fits of m(bb) spectra in different MVA categories
- search for a m(bb) bump on a smoothly falling background
- analysis is split into two parts from complementary trigger strategies: SingleB and DoubleB

CMS-PAS-HIG-16-003

calibration of b-jet pT

- regression MVA technique is used •
- trained using tt events, validated with Z+jets •
- 7% improved m(bb) resolution •

event categorization based on BDT

- discriminating variables: ٠
 - soft track-jet multiplicity
 - q/g discrimination: minor RMS of jet constituents in the η - ϕ plane ٠
 - VBF di-jet signature ٠
 - b-tag •
- separate trainings for **SingleB** and **DoubleB** ٠

CMS-PAS-HIG-16-003

- events are divided into 7 categories based in BDT output to maximize the signal sensitivity
- QCD modeling taken from data in signal-free category and then transferred to the signal categories
- top and Z+jets are modeled from MC
- simultaneous fit in 7 signal categories

CMS-PAS-HIG-16-003

combination of Run-1 results

The combination of Run 1 and Run 2: **observed (expected) upper limit of 3.4 (2.3) times the SM prediction**, and a signal strength of

$$\mu = 1.3^{+1.2}_{-1.1}$$

with significance 1.2 standard deviation

CMS-PAS-HIG-16-003

systematics

Background uncertainties			
QCD shape parameters	determined by the fit		
QCD bkg. normalization	determined by the fit		
Top quark bkg. normalization	309	%	
Z/W+jets bkg. normalization	309	%	
Uncertainties affecting the signal	VBF signal	GF signal	
JES (signal shape)	2%	/o	
JER (signal shape)	2%	/o	
Integrated luminosity	2.7	%	
Branching fraction $(H \rightarrow b\overline{b})$	1.3	%	
JES (acceptance)	1-4%	2–11%	
JER (acceptance)	1–2%	1–3%	
b-jet tagging	3–9%	2–10%	
Trigger	8–15%	6–11%	
Theory uncertainties	VBF signal	GF signal	
UE & PS	2-7%	10-45%	
Scale variation (global)	0.4%	8%	
Scale variation (categories)	1%	15%	
PDF (global)	2%	3%	
PDF (categories)	1–2%	1–2%	

observation of H-> tau tau

systematics

Phys. Lett. B 779 (2018) 283	Source of uncertainty	Prefit	Postfit (%)
	$ au_{ m h}$ energy scale	1.2% in energy scale	0.2–0.3
	e energy scale	1–2.5% in energy scale	0.2–0.5
systematics	e misidentified as $\tau_{\rm h}$ energy scale	3% in energy scale	0.6–0.8
•	μ misidentified as $\tau_{\rm h}$ energy scale	1.5% in energy scale	0.3–1.0
	Jet energy scale	Dependent upon $p_{\rm T}$ and η	
	$\vec{p}_{\rm T}^{\rm miss}$ energy scale	Dependent upon $p_{\rm T}$ and η	
	$\tau_{\rm h}{ m ID}$ & isolation	5% per $\tau_{\rm h}$	3.5
	$ au_{ m h}$ trigger	5% per $\tau_{\rm h}$	3
	$\tau_{\rm h}$ reconstruction per decay mode	3% migration between decay modes	2
	e ID & isolation & trigger	2%	—
	μ ID & isolation & trigger	2%	—
	e misidentified as $ au_{ m h}$ rate	12%	5
	μ misidentified as $ au_{ m h}$ rate	25%	3–8
	Jet misidentified as $\tau_{\rm h}$ rate	20% per 100 GeV $\tau_{\rm h}$ $p_{\rm T}$	15
	$Z \rightarrow \tau \tau / \ell \ell$ estimation	Normalization: 7–15%	3–15
		Uncertainty in $m_{\ell\ell/\tau\tau}$, $p_{\rm T}(\ell\ell/\tau\tau)$,	
		and m_{jj} corrections	
	W + jets estimation	Normalization (e μ , $\tau_{\rm h}\tau_{\rm h}$): 4–20%	
	,	Unc. from CR ($e\tau_{\rm b}, \mu\tau_{\rm b}$): $\simeq 5-15$	_
		Extrap. from high- $m_T \operatorname{CR} (e\tau_h, \mu\tau_h)$: 5–10%	
	OCD multijet estimation	Normalization (e <i>u</i>): $10-20\%$	5–20%
		Unc. from CR ($e\tau_{\rm b}, \tau_{\rm b}\tau_{\rm b}, \mu\tau_{\rm b}$): $\simeq 5-15\%$	_
		Extrap. from anti-iso. CR ($e\tau_{\rm h}, \mu\tau_{\rm h}$): 20%	7-10
		Extrap. from anti-iso. CR $(\tau_h \tau_h)$: 3–15%	3–10
	Diboson normalization	5%	_
	Single top quark normalization	5%	—
	tt estimation	Normalization from CR: $\simeq 5\%$	_
		Uncertainty on top quark $p_{\rm T}$ reweighting	—
	Integrated luminosity	2.5%	_
	b-tagged jet rejection $(e\mu)$	3.5–5.0%	
	Limited number of events	Statistical uncertainty in individual bins	—
	Signal theoretical uncertainty	Up to 20%	_

evidence for VH, H-> bb

Phys. Lett. B 780 (2018) 501

systematics

		Individual contribution	Effect of removal to
Source	Type	to the μ uncertainty (%)	the μ uncertainty (%)
Scale factors ($t\bar{t}$, V+jets)	norm.	9.4	3.5
Size of simulated samples	shape	8.1	3.1
Simulated samples' modeling	shape	4.1	2.9
b tagging efficiency	shape	7.9	1.8
Jet energy scale	shape	4.2	1.8
Signal cross sections	norm.	5.3	1.1
Cross section uncertainties	norm.	4.7	1.1
(single-top, VV)			
Jet energy resolution	shape	5.6	0.9
b tagging mistag rate	shape	4.6	0.9
Integrated luminosity	norm.	2.2	0.9
Unclustered energy	shape	1.3	0.2
Lepton efficiency and trigger	norm.	1.9	0.1

search for Boosted H-> bb

Phys. Rev. Lett. 120 (2018) 071802

Systematic source	W/Z	Н
Integrated luminosity	2.5%	2.5%
Trigger efficiency	4%	4%
Pileup	<1%	<1%
$N_2^{1,\text{DDT}}$ selection efficiency	4.3%	4.3%
Double-b tag	4% (Z)	4%
Jet energy scale / resolution	10/15%	10/15%
Jet mass scale $(p_{\rm T})$	$0.4\%/100{ m GeV}(p_{ m T})$	$0.4\%/100{ m GeV}~(p_{ m T})$
Simulation sample size	2–25%	4–20% (ggF)
H $p_{\rm T}$ correction	—	30% (ggF)
NLO QCD corrections	10%	—
NLO EW corrections	15-35%	—
NLO EW W/Z decorrelation	5-15%	—

search for H-> µµ

Phys. Rev. Lett. 120 (2018) 071802