

Recent $t\bar{t}H$ and tH results from CMS

Carmen Diez Pardos (DESY) 28 May 2018

Higgs Toppings Workshop - Probing Top-Higgs Interactions at the LHC 27 May-2 Jun 2018, Benasque (Spain)

Top-Higgs coupling: the hunt for $t\bar{t}H$

Best direct probe of the top-Higgs Yukawa coupling, vital step towards verifying the SM nature of the Higgs boson

- Top quark is the most strongly-coupled SM fermion $(y_t \sim 1)$
- Direct measurement of y_t in tTH production:
 - gluon-gluon fusion: assumes no BSM coupling
- y_t in tH production: access to sign of the coupling

Challenges and analysis strategy

• Challenges

- $\sigma_{\rm H} \approx 0.5 \text{ pb at } \sqrt{s} = 13 \text{TeV}$ (m_H=125GeV), $\sigma_{\rm t\bar{t}} \approx 830 \text{ pb @13 TeV}$
 - $\rightarrow~$ Larger increase in signal than backgrounds from 8 to 13 TeV
 - $\rightarrow~$ By this year up to 6 times more data
- Crucial to understand $t\bar{t}+X$ (X = b \bar{b} , W, Z)
- Large combinatorics of leptons and jets from top quark decays

• tH: yet smaller $\sigma \approx 0.1$ pb!

- Sophisticated analysis strategies
 - $\bullet~t\bar{t}$ like selections with additional searches for Higgs decay products
 - Event categorization based on top quark (W boson) and Higgs decay modes
 - MVA techniques, Matrix-Element-Methods used to extract signal

Introduction

Top quark \times Higgs decay channels

- Exploiting all tt decay channels and Higgs decays to
 - $\bullet\$ bottom quarks \rightarrow Large BR, large background contributions
 - $\bullet~$ W, Z bosons, taus \rightarrow smaller production rate, lower backgrounds
 - $\bullet~{\rm photons} \rightarrow {\rm clean}$ final state, very small rate

$t\bar{t}H(b\bar{b})$ Production

- Large ${\cal B}(H \to b \bar{b})$, access coupling 3rd generation quarks
- Challenging final state
 - Huge combinatorics in event reconstruction
 - Poor $H \rightarrow b\bar{b}$ mass resolution
 - Large $t\bar{t} + b\bar{b}$ background of $\mathcal{O}(10)pb$ with associated large theory uncertainties: from simulation
- Search channels
 - Leptonic tt: higher purity
 - Fully-hadronic tt : higher rate

tīH(bb) Leptonic

arXiv:1804.03682

ttH(bb)

- Events with exactly 1 or 2 leptons (e, μ)
- At least 4 jets, with at least 3 b-tagged
- Backgrounds estimated from MC
- Exploiting Matrix-Element (ME) methods and MVA to discriminate signal from background

ttH(bb) Leptonic

tīH(bb)

arXiv:1804.03682

- Events with exactly 1 or 2 leptons (e, μ)
- At least 4 jets, with at least 3 b-tagged
- Backgrounds estimated from MC
- Exploiting Matrix-Element (ME) methods and MVA to discriminate signal from background
- Method chosen based on expected sensitivity

Channel	Method	Best-fit μ
		$\pm tot(\pm stat\ \pm syst)$
Single-lepton	BDT+MEM	$1.0^{+0.69}_{-0.66}\left(\begin{smallmatrix}+0.31 & +0.62\\-0.30 & -0.59\end{smallmatrix}\right)$
Single-lepton	DNN	$1.0^{+0.58}_{-0.55}\left(\begin{smallmatrix}+0.30&+0.50\\-0.29&-0.47\end{smallmatrix}\right)$
Dilepton	BDT+MEM	$1.0^{+1.22}_{-1.12}\left(\begin{smallmatrix}+0.65&+1.04\\-0.62&-0.93\end{smallmatrix}\right)$
Dilepton	DNN	$1.0^{+1.38}_{-1.36} \left(\begin{smallmatrix} +0.71 & +1.18 \\ -0.69 & -1.18 \end{smallmatrix} \right)$

ttH(bb) Leptonic: dilepton tt channel

 $\bullet \geq$ 4j, 3b: BDT separating signal and inclusive $t\bar{t}+jets$ background as final discriminant

C. Diez Pardos

ttH(bb) Leptonic: dilepton tt channel

• \geq 4j, \geq 4b: low/high BDT sub-categories + Matrix Element Method (MEM) separating against tt + bb background as final discriminant

C. Diez Pardos

ttH(bb)

ttH(bb) Leptonic: lepton+jets tt channel

- Search in single-lepton tt channel
- Events categorised by number of jets: 4, 5, ≥ 6

CMS Preliminary

- Deep Neural Network (DNN) per jet category: multi-classification as signal or any of 5 t \overline{t} + jets bkgs. (t \overline{t} + b \overline{b} , t \overline{t} + 2b, t \overline{t} + b, t \overline{t} + c \overline{c} , t \overline{t} + LF)
- Final discriminant: DNN output of chosen process node

35.9 fb⁻¹ (13 TeV)

signal

Data

ttH(bb) Leptonic: Results

Best-fit $\mu = 0.72^{+0.45}_{-0.45}$, at 1.6 (2.2) σ obs. (exp.) significance

ttH(bb) Leptonic: Results

Uncertainty source	$\pm \sigma_{\mu}$
total experimental	+0.15/-0.16
b tagging	+0.11/-0.14
jet energy scale	+0.06/-0.07
total theory	+0.28/-0.29
$t\bar{t} + HF$ cross-section and PS	+0.24/-0.28
size of MC samples	+0.14/-0.15
total systematic	+0.38/-0.38
statistical	+0.24/-0.24
total	+0.45/-0.45

Best-fit $\mu = 0.72^{+0.45}_{-0.45}$, at 1.6 (2.2) σ obs. (exp.) significance

Limited by tt + HF and b-tagging uncertainties

C. Diez Pardos

$t\bar{t}H(b\bar{b}) \text{ Hadronic}$

- Trigger: \geq 6 jets, large HT, \geq 1 or 2 b-tagged jets
- Challenge:
- Larger signal contribution
- Possibility to fully reconstruct the event

arXiv:1803.06986

$t\bar{t}H(b\bar{b}) \text{ Hadronic}$

- Trigger: \geq 6 jets, large HT, \geq 1 or 2 b-tagged jets
- Challenge:
 - Large backgrounds from QCD multi-jets, tt + jets, and the irreducible tt + bb
- Larger signal contribution
- Possibility to fully reconstruct the event

arXiv:1803.06986

• A quark-gluon discriminant is used to differentiate quarks jets from gluon jets

- Discrimination against QCD multijets
- Dedicated MEM to discriminate signal against $t\bar{t} + jets$ and $t\bar{t} + b\bar{b}$

ttH(bb) Hadronic: Analysis strategy

- \geq 7 jets, \geq 3 b-tagged jets, $H_{\rm T}$ > 500 GeV, no leptons
- Events categorised by number of jets and b-tagged jets
- Dominant background: QCD-multijet production
 - Shape from low b-tag multiplicity control region in data
 - Rate from final fit to data

	$N_{\text{CSVM}} = 2$ $N_{\text{CSVL}} \ge 3$	$N_{ m CSVM} \ge 3$
0.01.0	CR	SR
QGLK > 0.5	(to extract distribution)	(final analysis)
	Validation CR	VR
QGLK < 0.5	(to validate distribution)	(comparison with data)

ttH(bb)

ttH(bb) Hadronic: Analysis strategy

۰

 $t\bar{t}H(b\bar{b})$

ttH(bb) Hadronic: Results

Best-fit $\mu = 0.9^{+1.5}_{-1.5}$, upper 95% C.L. limit 3.8 (3.1) obs. (exp.) × SM

ttH(bb) Hadronic: Results

Best-fit $\mu = 0.9^{+1.5}_{-1.5}$, upper 95% C.L. limit 3.8 (3.1) obs. (exp.) × SM

• Major systematic uncertainties: Multijet estimation, tt+HF prediction, b-tagging and JES etc.

ttH multilepton

arXiv:1803.05485

- $\bullet\,$ Multilepton final states: Higgs decay to W^+W^-, ZZ, and $\tau\tau$
- Events categorized based on number of leptons and τ_h candidates

- Additional requirements on jets
 - At least 2 loose or 1 medium b-tagged jets
 - At least 2 to 4 jets, depending on event category
- Major backgrounds
 - $\bullet\,$ Irreducible: $t\bar{t}+V$ and diboson, predicted from simulation and control regions
 - $\bullet\,$ Reducible: non-prompt leptons in $t\bar{t}+jets$ events, estimated from data
 - Large $t\bar{t} + fake \tau_h$ for 1 lepton + 2 τ_h
- BDT and MEM discriminants to discriminate signal from backgrounds

- Event categorization in lepton flavor, and b-jet multiplicity
- Discriminating variables
 - MEM against tTZ (2 leptons same-sign + 1 τ_h)

- Event categorization in lepton flavor, and b-jet multiplicity
- Discriminating variables
 - MEM against tTZ (2 leptons same-sign + 1 τ_h)
 - Yield in 4-leptons (low stats.)

- Event categorization in lepton flavor, and b-jet multiplicity
- Discriminating variables
 - MEM against ttZ (2 leptons same-sign + 1 τ_h)
 - Yield in 4-leptons (low stats.)
 - BDTs against tt
 + jets (1l+2 τ_h) and tt
 + jets + tt
 + V (2 leptons same-sign, 3 leptons has MEM as input)

ttH multilepton results

Best-fit $\mu = 1.23^{+0.45}_{-0.43}$, at 3.2 (2.8) σ obs. (exp.) significance Cross check analysis with $t\bar{t} + V$ as signal, normalization constrained using control regions: $\mu = 1.04^{+0.50}_{-0.36}$, 2.7 σ sig.

ttH multilepton results

ttH multilepton results

Best-fit $\mu = 1.23^{+0.45}_{-0.43}$, at 3.2 (2.8) σ obs. (exp.) significance

Cross check analysis with $t\bar{t} + V$ as signal, normalization constrained using control regions:

 $\mu = 1.04^{+0.50}_{-0.36}$, 2.7 σ sig.

- \bullet Limited by non-prompt lepton estimation and tau identification, JES and JER, tttH and ttt + V modelling
- Several channels limited by statistics C. Diez Pardos
 28.05.2018

$t\bar{t}H(\gamma\gamma)$

arXiv:1804.02610

- Clear signature coming from the photons
- Dedicated tt H channel part of the global H $\rightarrow \gamma\gamma$ analysis
- $\bullet~t\overline{t}$ hadronic and leptonic channels
 - Hadronic tt decay: MVA is used for background rejection
- Signal extracted from fit to $m_{\gamma\gamma}$

 $t\bar{t}H(\gamma\gamma)$

$t\bar{t}H(\gamma \gamma$

$t\bar{t}H(\gamma\gamma)$ results

- Statistically limited
- Leading systematic uncertainties: Photon shower shape and energy scale

$t\bar{t}H(\gamma\gamma)$

$t\bar{t}H$ combination

Contributing analyses

- All of the presented ttH analyses with 2016 data
- 7 TeV (up to 5.1 fb⁻¹) + 8 TeV (up to 19.7 fb⁻¹):

Dedicated analyses targeting the bb and multilepton final states

The ttH categories of the H $\rightarrow \gamma\gamma$ analysis

Correlations between Run-1 and Run-2 analyses

- Inclusive signal theory and some background theory uncertainties correlated
- Experimental uncertainties largely uncorrelated

arXiv:1804.02610

tTH combination

ttH combination

- H $\rightarrow \gamma \gamma$ and H \rightarrow ZZ channels still limited by statistics
- Other channels dominated by systematics
- Signal theory mainly from inclusive ttH prediction
- Background theory mainly from $t\bar{t} + HF$ flavour prediction in $t\bar{t}H(b\bar{b})$
- Experimental: lepton efficiencies, lepton mis-id, b-tagging and MC stats all important

 $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16}(\text{stat})^{+0.17}_{-0.15}(\text{expt})^{+0.14}_{-0.13}(\text{Th. bkg})^{+0.15}_{-0.07}(\text{Th. sig})$

ttH combination

- H $\rightarrow \gamma \gamma$ and H \rightarrow ZZ channels still limited by statistics
- Other channels dominated by systematics
- Signal theory mainly from inclusive ttH prediction
- Background theory mainly from $t\bar{t} + HF$ flavour prediction in $t\bar{t}H(b\bar{b})$
- Experimental: lepton efficiencies, lepton mis-id, b-tagging and MC stats all important

Uncertainty source	$\Delta \mu$	
Signal theory	+0.15	-0.07
Inclusive ttH normalisation (cross section and BR)	+0.15	-0.07
ttH acceptance (scale, pdf, PS and UE)	+0.004	-0.004
Other Higgs boson production modes	+0.002	-0.003
Background theory	+0.14	-0.13
tt + bb/cc prediction	+0.13	-0.11
tt + V(V) prediction	+0.06	-0.06
Other background uncertainties	+0.03	-0.03
Experimental	+0.17	-0.15
Lepton (inc. τ_h) trigger, ID and iso. efficiency	+0.08	-0.06
Misidentified lepton prediction	+0.06	-0.06
b-Tagging efficiency	+0.05	-0.04
Jet and τ_h energy scale and resolution	+0.04	-0.04
Luminosity	+0.04	-0.03
Photon ID, scale and resolution	+0.01	-0.01
Other experimental uncertainties	+0.01	-0.01
Finite number of simulated events	+0.08	-0.07
Statistical	+0.16	-0.16
Total	+0.31	-0.26

 $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16}(\text{stat})^{+0.17}_{-0.15}(\text{expt})^{+0.14}_{-0.13}(\text{Th. bkg})^{+0.15}_{-0.07}(\text{Th. sig})$

ttH combination

- Observed significance is 5.2 σ (4.2 σ exp.) with respect to the $\mu_{\rm t\bar{t}H}=0$ hypothesis
- \bullet First observation of the $t\bar{t}H$ production process

Combination with other Higgs measurements CMS-HIG-17-031

Combination of $t\bar{t}H$ analyses, along with other Higgs measurements, for 13 TeV data

- ttH +tH production cross section modifier from per-production mode fit (other production modes floating)
- Top coupling modifier from κ-framework fit with effective loops

tHq/W

Search for tHq

CMS-HIG-17-005

• Study of tHq process exposes the relative sign of top-Higgs and W-Higgs couplings via interference ($\sigma_{tHq}^{SM} \approx 71 fb$, $\sigma_{tHq}^{\kappa_t=-1} \approx 790 fb$)

- Studied using similar strategies as for ttH
- Channels:
 - Same-sign dilepton (μμ, eμ): one W from Higgs decays hadronically, others decay leptonically.
 - Trilepton: All three Ws decay leptonically
- Background sources
 - Irreducible (t \overline{t} +X, diboson, rare) from MC
 - Reducible (fakes) estimated from data

28.05.2018

tHq/W

Search for tHq: analysis strategy

- Two separate BDT trainings using MC samples for signal (tHq with $\kappa_t = -1$, $\kappa_V = -1$) and backgrounds
 - Against tt: non-prompt lepton type background
 - \bullet Against combined $t\bar{t}Z$ and $t\bar{t}W:$ prompt lepton type background

Search for tHq: results

• Limit on common signal strength for $(tHq/W+t\bar{t}H)$ as function of κ_t/κ_V t $\bar{t}H$ is included as signal since its cross section varies as κ_t^2

tHq/W

Enhanced production cross section in the case of anomalous top-Higgs couplings

 κ_t values outside (-1.25, 1.6) are excluded at 95% C.L. for $\kappa_V=1$

C. Diez Pardos

Summary and outlook

- Results presented for $t\bar{t}H$ searches with 36 fb⁻¹ of pp collision data @ 13 TeV (2016 data)
 - Improvements in analysis techniques compared to Run 1 (e.g. DNN)
 - $\bullet\,$ Addition of new challenging final states: fully hadronic mode, final states with hadronic decaying $\tau\,$ leptons
 - $\bullet\,$ Top-Higgs couplings constrained to about $\,15\%$ with direct measurements
 - $\bullet\,$ Several channels already systematic limited (with ${\sim}30\%$ of the expected Run-2 lumi)
- \bullet Observation of ttH production, combining 7, 8, and 13 TeV analyses

