Search for BSM couplings in top quark events at CMS

Alexander Grohsjean

on behalf of the CMS Collaboration

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Seoul 2018 39th International Conference on High Energy Physics

- LHC successfully running at 13 TeV since 2015
 - CMS collected up to ~110 fb⁻¹ of data
 - \rightarrow no striking sign of new physics yet

• LHC successfully running at 13 TeV since 2015

- CMS collected up to ~110 fb⁻¹ of data
- \rightarrow no striking sign of new physics yet

- still several exciting perspectives for discoveries
 - precision measurements

 m_{x}

New Physics Interpretation: Effective Field Theory

- assume scale of new physics (NP) is larger than LHC scale: $\Lambda_{NP} > \Lambda_{SM}$
- extend the SM Lagrangian with higher-order operators to model new physics at Λ_{NP}

$$L_{EFT} = L_{SM} + \sum_{i} \frac{C_i}{\Lambda_{NP}^2} O_6 + \dots$$

famous example: Fermi theory of Beta decay

- searches for EFT are searches for new interactions
- special case: anomalous couplings

PLB 762 (2016) 512

V-A structure of Wtb coupling

 $L_{tWb} \propto \overline{b} \gamma^{\mu} (V_L P_L) t W_{\mu}^{-} + h.c.$

PLB 762 (2016) 512

PLB 762 (2016) 512

 $t - \frac{V_{tb}}{b}$

July 5th, 2018

PLB 762 (2016) 512

July 5th, 2018

PLB 762 (2016) 512

$$L_{tWb} \propto \overline{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-} - \overline{b} \frac{i \sigma^{\mu\nu} (p_t - p_b)_{\nu}}{m_W} (g_L P_L + g_R P_R) t W_{\mu}^{-} + h.c.$$

PLB 762 (2016) 512

$$L_{tWb} \propto \overline{b} \gamma^{\mu} (\mathbf{I}_{L} P_{L} + \mathbf{V}_{R} \mathbf{P}_{R}) t W_{\mu}^{-} - \overline{b} \frac{i \sigma^{\mu\nu} (p_{t} - p_{b})_{\nu}}{m_{W}} (g_{L} P_{L} + g_{R} P_{R}) t W_{\mu}^{-} + h.c.$$

PLB 762 (2016) 512

JHEP 02 (2017) 028

DESY

$$L_{tWb} \propto \overline{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-} - \overline{b} \frac{i \sigma^{\mu\nu} (p_t - p_b)_{\nu}}{m_W} (g_L P_L + g_R P_R) t W_{\mu}^{-} + h.c.$$

Wtb vertex can also be probed in t production

JHEP 02 (2017) 028

$$L_{tWb} \propto \overline{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-} - \overline{b} \frac{i \sigma^{\mu\nu} (p_t - p_b)_{\nu}}{m_W} (g_L P_L + g_R P_R) t W_{\mu}^{-} + h.c.$$

- Wtb vertex can also be probed in t production
- use neural networks
 - separate single top from background
 - enhance sensitivity to anomalous couplings
 - expected (observed) 2D/3D limits @ 95% CL

scenario	V_ >	V _R <	g _L <	<g<sub>F</g<sub>	<
$V_L^{}V_R^{}$	0.97 (0.92)	0.28 (0.31)			
$V_L^{} g_L^{}$	0.92 (0.92)		0.10 (0.14)		
$V_{_{\rm L}} g_{_{\rm R}}$	0.94 (0.93)			-0.046 (-0.050)	0.046 (0.041)
$V_L^{} g_L^{} g_R^{}$	0.98 (0.97)		0.057 (0.10)	-0.049 (-0.051)	0.048 (0.046)
$V_L^{}V_R^{}g_R^{}$	0.98 (0.97)	0.16 (0.22)		-0.049 (-0.049)	0.039 (0.037)

July 5th, 2018

Differential tt Measurements

CMS-PAS-TOP-17-014

 modified gluon-top vertex affects rate and kinematics of tt production

$$O_{tG} = \bar{t}\sigma^{\mu\nu}T^A\tilde{\phi}G^A_{\mu\nu}$$

 azimuthal angle between leptons provides great sensitivity to potential top chirality flip from O_{tG}

Differential tt Measurements

CMS-PAS-TOP-17-014

 modified gluon-top vertex affects rate and kinematics of tt production

$$O_{tG} = \bar{t}\sigma^{\mu\nu}T^A\tilde{\phi}G^A_{\mu\nu}$$

- azimuthal angle between leptons provides great sensitivity to potential top chirality flip from O_{tG}
- differential distribution corrected for detector effects, $\Delta \chi^2$ test used to set limits

 $-0.06 < C_{tG} / \Lambda^2 < 0.41$ at 95% CL

significant improvement on existing 8 TeV
 constraints from CMS cross section measurement
 -0.42 < C_{tG} / Λ² < 0.30 (PRD 91 (2015) 114010)

first top quark results using EFT with NLO precision

Rare Process: ttZ/ttW

arXiv:1711.02547

- measurement of ttX cross sections at 13 TeV using 35.9 fb⁻¹
 - ttW: same-sign dilepton events
 - ttZ: final states with 3/4 leptons

check talk by N. Chanon for more details

July 5th, 2018

EFT Interpretation of ttX Cross Sections

- identified 8 Wilson coefficients C_i that affect ttW, ttZ, ttH
 without significantly impacting expected background yields
- fitting one Wilson coefficient at a time:
 - e.g. C_{uW} affecting mostly ttZ cross section

July 5th, 2018

EFT Interpretation of ttX Cross Sections

- identified 8 Wilson coefficients C_i that affect ttW, ttZ, ttH without significantly impacting expected background yields
- fitting one Wilson coefficient at a time:
 - e.g. C_{ww} affecting mostly ttZ cross section

0.2

1.6

0.4

-9.3

 $\bar{c}_{\rm uG}/\Lambda^2$

 $|\bar{c}_{\mathrm{uB}}/\Lambda^2|$

 $\bar{c}_{\rm Hu}/\Lambda^2$

 \bar{c}_{2G}/Λ^2

Alexander Grohsjean

7

• •••	0		g	t
	D_{-1} (:1 [T- $\chi -2$]	(90) CI [T-V-2]	$0 = 0/C I [T_{-} V_{-}^{-2}]$	
Wilson coefficient	Best fit [lev -]	68% CL [Iev -]	95% CL [Iev -]	
$\bar{c}_{\rm uW}/\Lambda^2$	1.7	[-2.4, -0.5] and $[0.4, 2.4]$	[-2.9, 2.9]	
$ \bar{c}_{\rm H}/\Lambda^2 - 16.8 { m TeV^{-2}} $	15.6	[0,23.0]	[0, 28.5]	
$\left \tilde{c}_{3\mathrm{G}}/\Lambda^2\right $	0.5	[0,0.7]	[0, 0.9]	

[-10.3, -8.0] and [0, 2.1]

-0.9, -0.3] and [-0.1, 0.6]

ttZ/ttW/ttH provide great complementary sensitivity to several EFT operators

[0, 0.3]

[0, 2.2]

-1.1, 0.8

[0, 2.7]

[-1.0, -0.9] and [-0.3, 0.4]

[-11.1, -6.5] and [-1.6, 3.0]

arXiv:1711.02547

Flavor Changing Neutral Currents

suppressed by GIM mechanism at higher orders

many BSM models predict sizable FCNC branching fraction

	SM	2HDM FC / FV	MSSM / w. RPV	RS	
$BR(t\tocg)$	10 ⁻¹²	10 ⁻⁸ /10 ⁻⁴	10 ⁻⁷ / 10 ⁻⁶	10 ⁻¹⁰	
$BR(t\tocZ)$	10 ⁻¹⁴	10 ⁻¹⁰ / 10 ⁻⁶	10 ⁻⁷ / 10 ⁻⁶	10 ⁻⁵	
$BR(t\to c\gamma)$	10 ⁻¹⁴	10 ⁻⁹ / 10 ⁻⁷	10 ⁻⁸ / 10 ⁻⁹	10 ⁻⁹	
$BR(t \rightarrow cH)$	10 ⁻¹⁵	10 ⁻⁵ /10 ⁻³	10 ⁻⁵ / 10 ⁻⁹	10-4	arXiv:1311.2028

 large variety of searches for enhanced couplings of top quarks to u/c quarks via g, Z, γ, H in top production and decay

FCNC: t→Zu/c

CMS-PAS-TOP-17-017

- search for Z mediated FCNC in tt decay and single top production at 13 TeV using 35.9 fb⁻¹
- signature: 3 leptons, one Z candidate, ≥1 b-jet
 - two signal regions (SR):

2-3 jets for t \rightarrow Zq decay and 1 jet for tZq production

FCNC: t→Zu/c

CMS-PAS-TOP-17-017

- search for Z mediated FCNC in tī decay and single top production at 13 TeV using 35.9 fb⁻¹
 signature: 3 leptons, one Z candidate, ≥1 b-jet
 two signal regions (SR): 2-3 jets for t→Zq decay and 1 jet for tZq production
- use BDT to separate $t \rightarrow Zu$ ($t \rightarrow Zc$) from background for $t\bar{t}$ SR (left) and single top SR (right)

July 5th, 2018

FCNC: t→Zu/c

CMS-PAS-TOP-17-017

- search for Z mediated FCNC in tt decay and single top production at 13 TeV using 35.9 fb⁻¹
- signature: 3 leptons, one Z candidate, ≥1 b-jet
 - two signal regions (SR):

2-3 jets for t \rightarrow Zq decay and 1 jet for tZq production

- use BDT to separate $t \rightarrow Zu$ ($t \rightarrow Zc$) from background for $t\bar{t}$ SR (left) and single top SR (right)
- expected (observed) limits on branching ratios

 $BR(t \rightarrow Zu) < 0.024 (0.015) \%$ $BR(t \rightarrow Zc) < 0.045 (0.037) \%$

FCNC Interpretation in Terms of EFT

CMS-PAS-TOP-17-017

set limits on trilinear top-quark-boson couplings

$$L = \sum_{q=u,c} \frac{g}{\sqrt{2}c_W} \frac{\kappa_{tZq}}{\Lambda} \bar{t}\sigma^{\mu\nu} (f_{Zq}^L P_L + f_{Zq}^R P_R) qZ_{\mu\nu}$$

significant improvement compared to 8 TeV result

FCNC: $t \rightarrow Hu/c$

arXiv:1712.02399

search for Higgs FCNC at 13 TeV using 35.9 fb⁻¹

- explore single lepton events in jet/bjet categories
- staggered BDT approach
 - assign b-jets to initial either top or Higgs:
 ~75% correct assignment
 - discriminate t→Hu/t→Hc from backgrounds
- expected (observed) limits on branching ratios

BR(t \rightarrow Hu) < 0.47(0.34) % BR(t \rightarrow Hc) < 0.47(0.44) %

July 5th, 2018

Limits on BSM Models of FCNC

start probing models predicting highest branching fractions

Summary and Outlook

- measurements often interpreted in terms of anomalous couplings
 - consistent transition to theoretically better defined EFT just started
 - first results using NLO predictions already available
- Iarge FCNC program during LHC Run 2
 - results already surpassing results at 7/8 TeV
 - several more channels still to explore

Back-Up

Rare Process: ttZ/ttW

arXiv:1711.02547

- measurement of ttX cross sections at 13 TeV using 35.9 fb⁻¹
 - ttW from same-sign dilepton events
 - ttZ from final states with 3 and 4 leptons
- split events according to number of jets and b-tagged jets
- train BDT for same-sign dilepton events ("D") to separate ttW from non-prompt leptons
- fit across categories
 to extract σ_{tīw} vs σ_{tīz}

July 5th, 2018