

Top modelling and tuning in CMS

Oleksandr Zenaiev (DESY) on behalf of CMS collaboration

ICHEP Seoul, 4-11 July 2018

Event modelling

Ingredients:

- Hard scattering
- Initial and final state radiation (parton shower)
- Hadronisation
- Multiple parton interaction

Not all ingredients are perturbatively computable:

- need phenomenological input
- tunable parameters are present also in perturbative ingredients
- $\rightarrow\,$ use experimental data to constrain models

Jet multiplicity in *t*t events [CMS-PAS-TOP-16-021]

Jet multiplicity N_{jets} depends on α_s^{ISR} (high N_{jets}) and ME/PS matching h_{damp} (ratio 3/2):

- $h_{\text{damp}} = 1.581^{+0.658}_{-0.585} m_t$
- $\alpha_s^{\text{ISR}} = 0.1108^{+0.0145}_{-0.0142}$ (c.f. in Monash-based tune $\alpha_s^{\text{ISR}} = 0.1365$)

 \rightarrow using this tuned α_s^{ISR} , underlying event and minimum bias data, new tune **CUETP8M2T4** is derived and used in top quark measurements with 2016 data

Performance of new tune [CMS-PAS-TOP-16-021]

- similar for MG5_aMC@NLO [FxFx] with Pythia8
- ... except $p_T(t)$ (seen also with Run-I data)
- worse description by MG5_aMC@NLO [MLM]

1.15

0.8

pr(ts) [GeV]

Top quark definition at particle level [CMS-NOTE-2017-004]

Parton-level top quark measurements are more prone to theoretical uncertainties:

- due to large corrections applied to objects measured at detector level
- or just ill defined in some aspects (e.g. off-shell production and interference with background)

Parton Level

Alternatively, top "particle" is constructed from measured decay products:

- using only observable particles
- closer relation to measured objects
- → of fundamental importance for differential top measurements

Variable of interest 1

Measurements of $p_T(t)$ differential cross sections [PRD 97 (2018) 112003, CMS-PAS-TOP-17-014]

 Powheg+Herwig describes p_T(t) better than Powheg+Pythia8

... but Powheg+Herwig describes other distributions worse

at parton level, NNLO describes
*p*_T(t) better than NLO

... NNLO is not yet available for particle level predictions

 different level of agreement with theoretical predictions when looking at parton or particle level

... smaller data uncertainties at particle level

(see Douglas John Paul Burns' talk 5 July 09:00)

ightarrow stringent tests of theoretical predictions can be done at particle level

Tuning of colour reconnection models using underlying event [CMS-PAS-TOP-17-007]

- Measurements of underlying event are used to constrain colour reconnection (CR) and multiple parton interaction models
- Introduces two new CR tunes based on models:
 - (1) "QCD-inspired": string formation beyond leading color
 - (2) "gluon-move": allows gluons to be moved to another string
- → Important for evaluating systematic uncertainties in top quark measurements relative to CR, e.g. for top quark mass

Parameters	CUETP8M2T4	QCD inspired	gluon move				
MultipartonInteractions:pT0Ref	2.20	2.17	2.30	1.4			
MultipartonInteractions:expPow	1.60	1.31	1.35				
MultipartonInteractions:ecmRef	7000	7000*	7000*	1			
MultipartonInteractions:ecmPow	0.25	0.25*	0.25*	1			
ColourReconnection:range	6.59	-	-				
ColourReconnection:junctionCorrection	-	0.12 (1.20)	-	1			
ColourReconnection:timeDilationPar	-	15.9 (0.18)	-	5			
ColourReconnection:m0	-	1.2 (0.3)	-				
ColourReconnection:m2lambda	-	-	1.9 (1.0)				
ColourReconnection:fracGluon	-	-	$1.0^{*}(1.0)$				
ColourReconnection:dLambdaCut	-	-	$0.0^{*}(0.0)$				
PDF set	NNPDF30_LO [JHEP 04 (2015)]	NNPDF30_LO	NNPDF30_LO				
SpaceShower:alphaSvalue	0.1108*	0.1108^{*}	0.1108^{*}				
Goodness of fit/dof	1.89 [CMS-PAS-TOP-16-021]	1.06	1.69				
* = value kept fixed in the fit							
ColourReconnection: m2lambda ColourReconnection: fracGluon ColourReconnection: dLambdaCut PDF set SpaceShower:alphaSvalue Goodness of fit/dof * = v	NNPDF30_LO [JHEP 04 (2015)] 0.1108* 1.89 [CMS-PAS-TOP-16-021] alue kept fixed in the fit	- - - - - - - - - - - - - - - - - - -	1.9 (1.0) 1.0* (1.0) 0.0* (0.0) NNPDF30_LO 0.1108* 1.69				

(see Nataliia Kovalchuk's talk 7 July 17:30)

10

15

0.8

0.6

0.4

Top modelling and tuning in CMS

20

Underlying event in $t\bar{t}$ production [CMS-PAS-TOP-17-015]

- Underlying event (UE) is studied in tt production using dilepton events:
 - ▶ at energy scale ~ 2m_t ≫ in previous studies of UE
 - test universality of UE hypothesis at different energy scales
- Various kinematic distributions of UE are sensitive to MC parameters:
 - e.g. charged particle multiplicity N_{ch} is sensitive to FSR

Underlying event in $t\bar{t}$ production [CMS-PAS-TOP-17-015]

- Most distributions are in fair agreement with Pythia8 using CUETP8M2T4
 - for both Powheg or MG5_aMC@NLO
 - $\alpha_s^{\text{FSR}} = 0.120 \pm 0.006$: lower than in default Monash-based tune
- Default settings in Herwig++, Herwig7 and Sherpa are disfavored

Jet substructure in $t\bar{t}$ events [CMS-PAS-TOP-17-013]

- Multiple jet substructure observables are measured in *tt* events
 - Generalized angularities

$$\lambda_{\beta}^{\kappa} = \sum_{i} Z_{i}^{\kappa} \left(\frac{\Delta R(i, \hat{n}_{r})}{R} \right)^{\beta}$$

- * λ_0^0 : charged particle multiplicity
- * λ_1^1 : jet width
- ... (more than 20 observables are studied)
- Measured for inclusive and bottom, light-quark, and gluon jets from $t\bar{t}$
- Provided χ^2 for data-to-theory comparison:

Observable	flavor	POWHEG +PYTHIA 8			POWHEG +	SHERPA 2	DIRE
		FSR-down	nominal	FSR-up	HERWIG 7		NLO
$\alpha_s^{FSR}(m_Z)$		0.1224	0.1365	0.1543	0.1262	0.118	0.1201
λ_1^1 (width)	incl	2.2	148.6	1153.9	62.5	48.1	673.3
ndf = 8	bottom	2.9	225.6	1754.6	18.8	92.1	2841.6
	light	7.0	59.2	518.5	44.2	20.4	46.8
	gluon	2.9	17.6	95.7	15.4	8.1	175.3

 \rightarrow data on λ_1^1 prefer less FSR in Pythia8

Jet substructure in $t\bar{t}$ events [CMS-PAS-TOP-17-013]

- Used data on λ_1^1 to constrain α_s^{FSR}
 - ightarrow compatible with other CMS extractions using $t ar{t}$ data [CMS-PAS-TOP-17-015]
- Not all observables are well described
 - \rightarrow more complete tuning is needed to achieve better overall agreement
- Data can be compared to QCD calculations with higher-order corrections

Summary

- Using data to constrain theoretical models provides improved precision for new measurements:
 - ▶ e.g. $t\bar{t}$ Run-I data used to tune α_s^{ISR} [CMS-PAS-TOP-16-021] → further used in Run-II MC simulations
 - theoretical uncertainties are important in precision top measurements, e.g. measurement of top quark mass [arXiv:1805.01428]
- New analyses using Run-II top quark data:
 - Measurements of tt kinematics [JHEP04 (2018) 060, JHEP06 (2018) 002, PRD 97 (2018) 112003, CMS-PAS-TOP-17-014]:
 - * generally well describe by MC, except $p_T(t)$: higher-order corrections needed
 - particle-level top quark definition is crucial for stringent tests of predictions [CMS-NOTE-2017-004]
 - ▶ Underlying event in *t*t̄ [CMS-PAS-TOP-17-015]:
 - tests universality of UE hypothesis at different energy scales
 - Jet substructure in $t\bar{t}$ [CMS-PAS-TOP-17-013]:
 - * exhaustive data for testing parton shower and hadronization models

• All analyses will be available in RIVET for their future re-interpretation

BACKUP

Underlying event in $t\bar{t}$ production [CMS-PAS-TOP-17-015]

Event generator	POWHEG (v2)	MG5_aMC@NLO	SHERPA 2.2.4				
Matrix element characteristics							
Mode	hvq	FxFx Merging	O penLoops				
QCD scales (μ_R , μ_F)	$m_{\mathrm{T}}^{\mathrm{t}}$	$\sum_{t,\bar{t}} m_T/2$					
α _S	0.118	0.118	0.118				
PDF	NNPDF3.0 NLO	NNPDF3.0 NLO	NNPDF3.0 NNLO				
pQCD accuracy	tŧ [NLO]	tī +0,1,2 jets [NLO]	tī [NLO]				
	1 jet [LO]	3 jets [LO]					
Parton shower							
Setup designation	PW+PY8	amc@nlo+Py8	SHERPA				
PS	рутніа 8.219		CS				
Tune(s)	CUETP8M2T4		default				
PDF	NNPDF2.3 LO		NNPDF3.0 NNLO				
$(\alpha_{S}^{\text{ISR}}, \alpha_{S}^{\text{FSR}})$	(0.1108,0.1365)		(0.118,0.118)				
ME Corrections	on		n/a				
Setup designation	Pw+Hw++	Pw+Hw7					
PS	HERWIG++	HERWIG 7					
Tune(s)	EE5C	Default					
PDF	CTEQ6L1	MMHT2014lo68cl					
$(\alpha_S^{\text{ISR}}, \alpha_S^{\text{FSR}})$	(0.1262,0.1262)	(0.1262,0.1262)					
ME Corrections	off	on					