Messung der differentiellen Wirkungsquerschnitte der assoziierten Produktion von Top-Quark- und Bottom-Quark-Paaren ($t\bar{t}+b\bar{b}$) im dileptonischen Zerfallskanal bei $\sqrt{s} = 13$ TeV mithilfe des CMS Experiments

> Maria Aldaya Martin, Nazar Bartosik, Carmen Diez Pardos, Andrej Saibel

> > DESY

Maria Laach, 2018

▶ 2012: Entdeckung eines Bosons mit Spin 0, m ≈ 125 GeV [arXiv:1207.7214],[arXiv:1207.7235]

Offene Fragen:

- Standardmodell Higgs?
- Yukawa-Kopplung wie in SM?
- Suche nach ttH(bb) [arXiv:1804.03682]

> Entdeckungen 2018:

- tīH
 - [arXiv:1806.00425][arXiv:1804.02610]
- H(bb̄) [arXiv:1808.08238][arXiv:1808.08242]

Motivation für die Messung von $t\bar{t}+bb$

- Wichtiger Untergrund f
 ür SM und BSM
 - Irreduzibler Untergrund f
 ür ttH(bb)
 - Dominante Unsicherheit in ttH(bb)
 - Mehr Daten mit $\sqrt{s} = 13$ TeV
 - Input für verbesserte NLO Berechnungen

Ziele der Messung

- Differentielle Wirkungsquerschnitte bei $\sqrt{s} = 13 \text{ TeV}$
- Vergleiche mit mehreren theoretischen Vorhersagen

[arXiv:1510.03072] (8 TeV)

Messung der differentiellen Wirkungsquerschnitte

- Ziel: Differentielle WQ von "zusätzlichen" b-Jets
 - = 1st, 2nd p_T , $|\eta|$ zusätzlicher Jets
 - $\ \ \, \Delta R_{\mathrm{b}\bar{\mathrm{b}}},\ m_{\mathrm{b}\bar{\mathrm{b}}}$
- Identifizierung von b-Jets aus dem Top-Quark-Zerfall
 - Grund: Vermeidung von Bias
- Sortiere die übrigen (zusätzlichen) b-Jets nach p_T
- Vergleiche Daten mit theoretischen Vorhersagen
 - Entfaltung der Daten
 - Subtraktion der Untergründe

tt+bb differentiell

Ereignisselektion und Phasenraumdefinitionen

Single- and Dileptontrigger

Leptons:

- I⁺I⁻, entgegengesetzt geladen
- Veto Resonanzen $m_{\rm H} \leq 20$
- Gleicher Flavour: veto Z-Massen-Fenster
- $E_{\rm T}^{\rm miss} \ge 40 {
 m GeV}$

Jets:

- Zwei Jets p_T>30 GeV, andere Jets p_T>20 GeV
- \geq 3 b-getaggte Jets

ttb

tt2b

- Daten-MC Übereinstimmung für Entfaltung
- Untergrundabschätzung
- Fit an die b-Tag-Multiplizität

Templates für:

- $t\bar{t}+HF$: $t\bar{t}+b\bar{b}$, $t\bar{t}+b$, $t\bar{t}+2b$
- tt+Other: tt+cc, tt+LF
- Andere Untergründe

V+Jets, VV, ttV, ttH

🔎 or more b jets

🔵 💮 not in acceptance

overlapping

B-tagged jet multiplicity

Andrej Saibel (DESY)

- Daten-MC-Übereinstimmung verbessert sich
- > Einfluss der Fit-Ergebnisse ist klein

Identifikation der b-Jets aus dem tt-Zerfall (RECO)

- Motivation:
 - Kombinatorisches Problem der Zuordnung von b-Jets
 - Kinematische Rekonstruktion: $\approx 25\%$ Effizienz
- ≻ Jet-Ladung zur Unterscheidung b-,b-Jet

$$\mathbf{c}_{\mathsf{rel}} = \frac{\sum_{i=1}^{n} c_i (\vec{p}_{\mathsf{jet}} \cdot \vec{p}_i)^{\mathsf{x}}}{\sum_{i=1}^{n} (\vec{p}_{\mathsf{jet}} \cdot \vec{p}_i)^{\mathsf{x}}}$$

BDTs, um b-Jets aus dem tt-Zerfall zu finden

BDT Inputvariablen:

$$\begin{array}{l} & c_{rel}^{b} - c_{rel}^{\bar{b}} \, {\rm jet \, charge} \\ & = \Delta R^{b,l^+}, \, \Delta R^{\bar{b},l^-} \\ & = |\Delta \phi^{bl^+,\bar{b}l^-}| \\ & = p_T^{b,l^+}, \, p_T^{\bar{b},l^-} \\ & = m^{b,l^+} + m^{\bar{b},l^-} \\ & = m^{b,l^+} - m^{\bar{b},l^-} \\ & = m^{b\bar{b}l^+l^-} - m^{b\bar{b}} \\ & = \frac{1}{2} (m_t^{bE_t^{miss}} + m_t^{\bar{b}E_t^{miss}}) \end{array}$$

Andrej Saibel (DESY)

tī+bb differentiell

Maria Laach, 2018 8 / 14

- Training:
 - Powheg+Pythia8 tt+jets
 - \blacksquare Trainingsereignisse: \geq 3 jets, 3 b-tags und 4 jets, 4 b-tags
 - MC-Wahrheit:
 - Hadron-Flavour, Ursprung (z.B:Top-Quark) durch Generatorhistorie
 - Signal(Untergrund): richtige(falsche) Zuordnung von b-Jets aus tt-Zerfall
- ≻ Optimierung
 - Variation der Hyperparameter und Variablensätze
 - Kriterium: größtes ROC-Integral bei Kolmogorov-Smirnov-Test>0.2

- Verhalten der zusätzlichen b-Jets ist für die Theorie von zentralem Interesse
- Zusätzliche b-Jets nach der MVA-Klassifizierung

Einfache Verteilungen sind gut beschrieben

Absolute differentielle Wirkungsquerschnitte

Mit A_{ij} der Migrationsmatrix, für jede Verteilung einzeln abgeleitet

- Absolute WQ: Powheg+Pythia8 skaliert auf NNLO Vorhersage
- \succ pprox 25% Unterschied zwischen Daten und Powheg+Pythia8
 - Fit ergibt gleichen Wert
 - Konsistent mit anderen aktuell durchgeführten Messungen in CMS

Andrej Saibel (DESY)

Optimierung der Bins

Andrej Saibel (DESY)

Zusammenfassung

- ▶ tī+bb̄ ist ein wichtiger und hochaktueller Prozess in SM und BSM Physik
- \blacktriangleright Verringerte stat. Unsicherheit im Vgl. zu 8 TeV um Faktor ≈ 2
- Monte Carlo und Daten allgemein in guter Übereinstimmung
- $\blacktriangleright\,$ Allerdings gibt es $\approx 25\%$ Abweichung bei den absoluten Wirkungsquerschnitten

Ausblick

- > Systematische Unsicherheiten zur Messung propagieren
- > Differentielle Wirkungsquerschnitte:
 - Vergleich mit NLO Vorhersagen: Sherpa, PowHel, Herwig 7
 - Collaboration: Maria Vittoria Garzelli (PowHel) für 13TeV tī+bb Vorhersagen

Rivet routine

Verbesserte kinematische Rekonstruktion f
ür t
t
+b

• Verbesserte kinematische Rekonstruktion f
ür t

• verbesserte kinematische Rekonstruktion f
ür t

• verbesserte kinematische Rekonstruktion f

Vielen Dank für Ihre Aufmerksamkeit!

BACKUP

Datensätze

> Daten: L= $35.867 \pm 0.9 \text{ fb}^{-1}$, 2016

- Signal: Powheg+Pythia8
- Untergründe:
 - Single Top: Powheg+Pythia8
 - Diboson: Pythia8
 - V+Jets, tt+V: MG5aMC@NLO+Pythia8
- Zusätzliche Vorhersagen zum Vergleich mit den entfalteten Daten:
 - Powheg+Herwig++
 - Produktion/Evaluation anderer Vorhersagen ist im Gange

> Angewandte Skalenfaktoren

- Lepton ID/Iso
- b-tag
- PU reweighting
- JER und JES

Unsicherheiten in der tīH(bb) Analyse [arXiv:1804.03682]

Uncertainty source	$\pm \Delta \mu$ (observed)	$\pm \Delta \mu$ (expected)
Total experimental	+0.15/-0.16	+0.19/-0.17
b tagging	+0.11/-0.14	+0.12/-0.11
jet energy scale and resolution	+0.06/-0.07	+0.13/-0.11
Total theory	+0.28/-0.29	+0.32/-0.29
$\ensuremath{t\bar{t}}\xspace$ +hf cross section and parton shower	+0.24/-0.28	+0.28/-0.28
Size of the simulated samples	+0.14/-0.15	+0.16/-0.16
Total systematic	+0.38/-0.38	+0.45/-0.42
Statistical	+0.24/-0.24	+0.27/-0.27
Total	+0.45/-0.45	+0.53/-0.49