

11th International Workshop on Top Quark Physics September 17, 2018

Measurements of the inclusive $t \bar{t} \mbox{ cross section}$ at the ATLAS and CMS experiments

<u>Matteo Defranchis</u>, Deutsches Elektronen-Synchrotron (DESY) on behalf of the ATLAS and CMS Collaborations

content of this presentation

introduction

 motivation and strategy for cross section measurements

recent results by ATLAS and CMS

- ATLAS and CMS results in I+jets channels at 8 TeV and 13 TeV
- ATLAS result in $e\mu$ channel at 13 TeV and $\sigma_{t\bar{t}}$ to σ_Z ratio
- first result at 5.02 TeV by CMS
- CMS observation of $\rm t\bar{t}$ production in pPb collisions at $\sqrt{s_{\rm NN}}=8.16~\rm TeV$

new CMS results expected

$t\overline{t}$ production mechanisms at LHC

- gluon fusion ($\simeq 90\%$)
- $q\bar{q}$ annihilation ($\simeq 10\%$)

fixed order predictions at NNLO+NNLL at $m_t = 172.5 \text{ GeV} (\text{Top}++v2.0, \text{TWiki})$

\sqrt{s} [TeV]	$\sigma_{ m tar t}$ [pb]	uncert. [%]
7	177.3	6.8
8	252.9	6.5
13	831.8	6.1

 \rightarrow uncertainty dominated by PDF+ $\!\alpha_{\rm S}$

gluon fusion

top pair production cross section: motivation

- sensitive to physics BSM, e.g. t production (see talk by Juan Gonzalez)
- main background of several searches and measurements
- $\simeq 15/{\rm s}~{\rm t\bar{t}}$ pairs produced at LHC
- ⇒ unique opportunity to study this process in detail and exploit its potential

- $t\bar{t}$ production is well understood process on a wide range of energy

top pair production cross section: general procedure

- measurement is performed in the visible phase space where a fiducial cross section $\sigma_{t\bar{t}}^{vis}$ is measured (systematic uncertainties can be constrained)
- observed $\sigma_{t\bar{t}}^{vis}$ is extrapolated to full phase space to get total cross section $\sigma_{t\bar{t}}$ \rightarrow introduces model dependence

$$\begin{aligned} \sigma_{t\bar{t}}^{vis} &= \quad \frac{N_{data} - N_{bkg}}{\epsilon_{sel} \cdot L_{int}} \\ \sigma_{t\bar{t}} &= \quad \frac{\sigma_{t\bar{t}}^{vis}}{A_{sel} \cdot BR} \end{aligned}$$

Top Pair Branching Fractions

"golden" decay channels for $\sigma_{t\bar{t}}$ measurement

- di-leptonic channels, in particular $e\mu$
- I+jets channels $(I = e, \mu)$
- \rightarrow all-hadronic channel penalized by JES, modelling and b-tagging uncertainties

introduction

 motivation and strategy for cross section measurements

recent results by ATLAS and CMS

- ATLAS and CMS results in I+jets channels at 8 TeV and 13 TeV
- ATLAS result in $e\mu$ channel at 13 TeV and $\sigma_{t\bar{t}}$ to σ_Z ratio
- first result at 5.02 TeV by CMS
- CMS observation of $\rm t\bar{t}$ production in pPb collisions at $\sqrt{s_{\rm NN}}=8.16~\rm TeV$

new CMS results expected

measurements of $\sigma_{ m t\bar t}$ at 7 and 8 TeV

ATLAS+CMS Preliminary LHC <i>lop</i> WG o _{it} summary, 15 = 7 TeV		Nov 2017		
NNLO+NNLL PRL 110 (2013) 252004 m _{nee} = 172.5 GeV, α ₄ (M ₂) = 0.118±0.001				
scale uncertainty	total stat			
scale \oplus PDF $\oplus \alpha_s$ uncertainty	total deal			
	of # (stat) # (syst) # (rumi)			
ATLAS, I+jets	H 179 ± 4 ± 9 ± 7 pb	L ₁₀ =0.7 fb ⁺		
ATLAS, dilepton (*)	173 ± 6 11 17 pb	L_10.7 fb1		
ATLAS, all jets (*)	167 ± 18 ± 78 ± 6 pb	L ₁₀ =1.0 fb ⁻¹		
ATLAS combined	177 ± 3 ** 7 pb	L_40.7-1.0 fb ⁻¹		
CMS, I+jets (*)	164 a 3 a 12 a 7 pb	L_+0.8-1.1 fb ⁻¹		
CMS, dilepton (*)	170 ± 4 ± 16 ± 8 pb	L_=1.1 fb1		
CMS, τ _{had} +μ (*)	149 ± 24 ± 26 ± 9 pb	L _{ef} =1.1 fb ⁻¹		
CMS, all jets (*)	136 a 20 a 40 a 8 pb	L_+1.1 fb ⁻¹		
CMS combined	166 ± 2 ± 11 ± 8 pb	L ₁₀ :0.8-1.1 fb ⁻¹		
LHC combined (Sep 2012) LHC top WG	173 ± 2 ± 8 ± 6 pb	L _{ef} =0.7-1.1 fb ⁻¹		
ATLAS, I+jets, b→Xµv →	165 ± 2 ± 17 ± 3 pb	L_=4.7 fb1		
ATLAS, dilepton eµ, b-tag	182.9 ± 3.1 ± 4.2 ± 3.6 pb	L ₁₀ =4.6 fb ⁺		
ATLAS, dilepton eµ, N e7	181.2 ± 2.8 + 3.3 pb	L_=4.6 fb1		
ATLAS, Theorematic ATLAS, Theore	194 ± 18 ± 46 pb	L _{ef} =1.7 fb ⁻¹		
ATLAS, all jets	168 ± 12 ⁶⁰ ± 7 pb	L _{ef} =4.7 fb ⁴		
ATLAS, T _{hed} H	183 ± 9 ± 23 ± 3 pb	L ₁₀ =4.6 fb ⁴		
CMS, I+jets	161.7 ± 6.0 ± 12.0 ± 3.6 p	L5.0 fb1		
CMS, dilepton eµ HH	173.6 ± 2.1 ^{4.5} ± 3.8 pb	L ₁₄ =5.0 fb ⁻¹		
CMS, The	143 ± 14 ± 22 ± 3 pb	L,,+2.2 fb ⁻¹		
CMS, T _{had} +jets	152 ± 12 ± 32 ± 3 pb	L_=0.9 fb*		
CMS, all jets	139 ± 10 ± 26 ± 3 pb	L ₁₄ =3.5 fb ⁺		
(*) Superseded by results shown below the line				
	NNPDF3.0 JHEP 04 (2015) 04	0		
	MMHT14 EPJ C75 (2015) 5			
	CT14 PRD 93 (2016) 033006			
	ABM12 PRD 89 (2015) 054028 [a ₄ (M ₂) = 0.113]			
	, ha an ha da	i Li i i i		
50 100 150	000 050 000	050		
50 100 150	200 250 300	300		
σ _{ii} [pb]				

 $\sqrt{s} = 8 \text{ TeV}$

ATLAS measurement in I+jets channel at 8 TeV

Eur. Phys. J. C 78 (2018) 487

- exactly one electron or muon, ≥ 4 jets, ≥ 1 b-tagged jet
- events split in 3 disjoint regions (different sensitivities to backgrounds and systematics + constrain b-tagging efficiencies)
 - **1** SR1: ≥ 4 jets, 1 b-tag
 - **2** SR2: 4 jets, 2 b-tags \rightarrow very pure in $t\bar{t}$
 - 3 SR3: ≥ 4 jets, ≥ 2 b-tags (excluding SR2)
- simultaneous fit of $\sigma_{t\bar{t}},$ b-tagging efficiencies and global jet energy scale factor
- NN using kinematic variables used to separate backgrounds in SR1 and SR3
- m(jj) from W in SR2, sensitive to JES

 $\sigma_{
m t\bar{t}} = 248.3 \pm 0.7 \, ({
m stat}) \pm 13.4 \, ({
m syst}) \pm 4.7 \, ({
m lum}) \, {
m pb}$

 \rightarrow limited by PDF in extrapolation (high-x gluon)

status of $t\bar{t}$ cross section measurements at 13 TeV

wide range of measurements by ATLAS and CMS in different decay channels

- all measurements performed with $\leq 3.2~{\rm fb}^{-1}$ from 2015 LHC run
- measurements in eµ and lepton+jets (CMS) channels are outstanding
- ATLAS benefits from higher integrated luminosity and reduced lepton ID uncertainties
- overall comparable precision between the two experiments

common limitation

• uncertainty on integrated luminosity ($\simeq 2.3\%$ for both experiments)

likelihood fit with systematic uncertainties as nuisance parameters \rightarrow constrained *in-situ*

- events split in 44 orthogonal categories of jet and b-tagged jet multiplicity, lepton charge and lepton flavour
 - 1, 2, 3, ≥ 4 jets
 - 0, 1, \geq 2 b-tagged jets
- m_{lb}^{min} distribution used to discriminate $t\bar{t}$ from backgrounds (W+jets, QCD multi-jet)
- dependence of $m_{
 m lb}^{
 m min}$ on $m_{
 m t}$ taken into account

main systematic uncertainties

- W+jets normalization (1.6 %)
- b-jet identification efficiency (1.3 %)

$$\begin{split} \sigma_{t\bar{t}} &= 888 \pm 2\,(\text{stat}) \pm^{26}_{28}\,(\text{syst}) \pm 20\,(\text{lum})\,\text{pb} \\ \sigma^{vis}_{t\bar{t}} &= 208.2 \pm 0.4\,(\text{stat}) \pm^{5.5}_{4.9}\,(\text{syst}) \pm 4.8\,(\text{lum})\,\text{pb} \end{split}$$

JHEP 09 (2017) 051

result used to extract top pole mass using TOP++

$$m_{
m t}=170.6\pm2.7\,{
m GeV}$$

Phys. Lett. B761 (2016) 136

- select events with exactly 1,2 b-tags
- simultaneously determine b-tagging efficiency from data → reduce uncertainty

$$N_1 = L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_b(1-C_b\epsilon_b) + N_1^{bkg}$$

$$N_2 = L\sigma_{t\bar{t}}\epsilon_{e\mu}C_b\epsilon_b^2 + N_2^{bkg}$$

express number of events in each b-tag multiplicity category in terms of $\sigma_{t\bar{t}}$ and

- **1** b-tagging efficiency ϵ_b
- 2 residual correlation between two jets C_b
- **3** efficiency of selecting $e\mu$ in $t\bar{t}$ event $\epsilon_{e\mu}$

 $\sigma_{t\bar{t}} = 818\pm8 \,(\text{stat})\pm27 \,(\text{syst})\pm19 \,(\text{lum})\pm12 \,(\text{beam}) \,\text{pb}$

Uncertainty (inclusive $\sigma_{t\bar{t}}$)	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ [%]	
Data statistics	0.9	
tī NLO modelling	0.8	
tt hadronisation	2.8	
Initial- and final-state radiation	0.4	
tī heavy-flavour production	0.4	
Parton distribution functions	0.5	
Single-top modelling	0.3	
Single-top/tī interference	0.6	
Single-top Wt cross-section	0.5	
Diboson modelling	0.1	
Diboson cross-sections	0.0	
Z+jets extrapolation	0.2	
Electron energy scale/resolution	0.2	
Electron identification	0.3	
Electron isolation	0.4	
Muon momentum scale/resolution	0.0	
Muon identification	0.4	
Muon isolation	0.3	
Lepton trigger	0.2	
Jet energy scale	0.3	
Jet energy resolution	0.2	
b-tagging	0.3	
Misidentified leptons	0.6	
Analysis systematics	3.3	
Integrated luminosity	2.3	
LHC beam energy	1.5	
Total uncertainty	4.4	10/14

$\sigma_{ m t\bar{t}}$ to σ_Z ratio by ATLAS at 13 TeV

JHEP 02 (2017) 117

result in $e\mu$ channel used to extract the $\sigma_{\rm t\bar{t}}$ to σ_Z ratio at 13 TeV

- cancellation of systematics
- σ_Z measured at sub-percent level (excluding integrated luminosity)
- sensitive to gluon-to-quark PDF ratio
- measurement of σ_Z ($Z \rightarrow \ell \ell$) fully synchronized with $t\bar{t}$ lepton selection (trigger, visible phase space)
- careful evaluation of correlations improves cancellation of systematics

$$\sigma_Z = 779 \pm 3 \text{ (stat)} \pm 6 \text{ (syst)} \pm 16 \text{ (lum)} \text{ pb}$$

 $\sigma_Z^{\text{NNLO}} = 744 \stackrel{+22}{_{-28}} \text{ (tot)} \text{ pb}$

first measurement at 5.02 TeV by CMS

first ever measurement at 5.02 TeV

- low pile-up run from 2015 (PU \simeq 1.4)
- integrated luminosity of 27.4 pb⁻¹
- e[∓]µ[±], µ⁺µ[−] and l+jets final states
 0 di-lepton: cut&count
 0 l+jets: fit to b-jet categories
- limited by statistical uncertainty

$$\sigma_{t\bar{t}} = 69.5 \pm 6.1 \,(\text{stat}) \pm 5.6 \,(\text{syst}) \pm 1.6 \,(\text{lum}) \,\text{pb}$$

 $\sigma_{t\bar{t}}^{\text{NNLO}} = 68.9 \pm \frac{1.9}{2.3} \,(\text{scale}) \pm 2.3 \,(\text{PDF}) \pm \frac{1.4}{1.0} \,(\alpha_{\text{S}}) \,\text{pb}$

- excellent agreement with prediction
- used to constrain gluon PDF at high momentum fraction
- \rightarrow moderate improvement in uncertainty

JHEP 03 (2018) 115

CMS observation of $\mathrm{t}\bar{\mathrm{t}}$ production in pPb collisions at 8.16 TeV

Phys. Rev. Lett. 119, 242001 (2017)

- 174 nb $^{-1}$ at $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$ (2016)
- I+jets channels considered ($I = e, \mu$)
- probe of nuclear PDF at high Bjorken-x

strategy

- likelihood fit of m(j, j') from W decays
- categories of b-tags (0, 1, \geq 2)
- simultaneously with b-tagging efficiency and global jet energy scale factor

results

- significance of $t\bar{t}$ signal above 5σ
- leading syst: b-tagging efficiency (13%)

$$\begin{split} \sigma_{t\bar{t}}^{\mu\pm {\rm jets}} &= 44\pm 3\,({\rm stat})\pm 8\,({\rm syst})\,\,{\rm nb}\\ \sigma_{t\bar{t}}^{e+ {\rm jets}} &= 56\pm 4\,({\rm stat})\pm 13\,({\rm syst})\,\,{\rm nb} \end{split}$$

Deutsches Elektronen-Synchrotron (DESY)

introduction

 motivation and strategy for cross section measurements

recent results by ATLAS and CMS

- ATLAS and CMS results in I+jets channels at 8 TeV and 13 TeV
- ATLAS result in $e\mu$ channel at 13 TeV and $\sigma_{t\bar{t}}$ to σ_Z ratio
- first result at 5.02 TeV by CMS
- CMS observation of $t\bar{t}$ production in pPb collisions at $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$

new CMS results expected

new CMS results expected for TOP2018

recent results from ATLAS and CMS

- overview of recent measurements from ATLAS and CMS at 8 and 13 TeV
- advantages, limitations and applications of each method highlighted
- CMS measurement at 5.02 TeV illustrated \rightarrow constrain gluon PDF at high momentum fraction
- CMS observation of $\mathrm{t}\bar{\mathrm{t}}$ production in pPb collisions at 8.16 TeV

new CMS results expected

Thank you for your attention

17/14

cut&count method

- events with ≥ 2 jets, ≥ 1 b-tagged
 → high signal purity
- · measurement limited by lepton efficiencies
- significant contribution from JES and choice of NLO gen. (powheg vs aMC@NLO)

$$\sigma_{
m tar t}=815\pm9\,({
m stat})\pm38\,({
m syst})\pm19\,({
m lum})\,{
m pb}$$

Source	$\Delta \sigma_{t\bar{t}}$ (pb)	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ (%)		
Experimental				
Trigger efficiencies	9.9	1.2		
Lepton efficiencies	18.9	2.3		
Lepton energy scale	<1	≤ 0.1		
Jet energy scale	17.4	2.1		
Jet energy resolution	0.8	0.1		
b tagging	11.0	1.3		
Mistagging	<1	≤ 0.1		
Pileup	1.5	0.2		
Modeling				
$\mu_{\rm F}$ and $\mu_{\rm R}$ scales	<1	< 0.1		
tŧ NLO generator	17.3	2.1		
tt hadronization	6.0	0.7		
Parton shower scale	6.5	0.8		
PDF	4.9	0.6		
Backgro	ound			
Single top quark	11.8	1.5		
VV	<1	≤ 0.1		
Drell–Yan	< 1	≤ 0.1		
Non-W/Z leptons	2.6	0.3		
tīV	<1	≤ 0.1		
Total systematic	27.9	16		
(no integrated luminosity)	nosity) 37.8 4			
Integrated luminosity	18.8	2.3		
Statistical	8.5	1.0		
Total	43.0	5.3		

EPJC 77 (2017) 172

ATLAS measurement in $\ell\ell$ and lepton+jets channels (preliminary)

ATLAS-CONF-2015-049

preliminary results with early 2015 data (85 pb^{-1} , 50 ns bunch spacing)

lepton+jets

- · suffers from limited knowledge of systematics
- especially JES and integrated luminosity

 $\sigma_{
m tar t}=$ 817 \pm 13 (stat) \pm 103 (syst) \pm 88 (lum) pb

ee and $\mu\mu$ channels

- simultaneous fit with b-tagging efficiency (as in $e\mu$)
- heavily penalized by data statistics

 $\sigma_{
m tar t}=$ 749 \pm 57 (stat) \pm 79 (syst) \pm 74 (lum) pb

 \rightarrow results not as competitive, but useful complement to the precise result in the $e\mu$ channel

lepton+jets

Uncertainty	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}} (\%)$
Data statistics	1.5
tī NLO modelling	0.6
tī hadronisation	4.1
Initial/final state radiation	1.9
PDF	0.7
Single top cross-section	0.3
Diboson cross-sections	0.2
Z+jets cross-section	1.0
W+jets method statistics	1.7
W+jets modelling	1.0
Electron energy scale/resolution	0.1
Electron identification	2.1
Electron isolation	0.4
Electron trigger	2.8
Muon momentum scale/resolution	0.1
Muon identification	0.2
Muon isolation	0.3
Muon trigger	1.2
E_{T}^{miss} scale/resolution	0.4
Jet energy scale	+10 -8
Jet energy resolution	0.6
b-tagging	4.1
NP & fakes	1.8
Analysis systematics	+13 -11
Integrated luminosity	+11 -9
Total uncertainty	+17 -14