Determination and application of TMDs obtained by the Parton Branching method

A. Bermudez Martinez in collaboration with P.Connor, F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik

November, 2018

Outline

- \circ Parton Branching (PB) method
- \circ TMD determination and validation
- TMD fit to data
- \circ Application to LHC processes
- Summary and conclusions

TMDs

- small momentum transfer
- small-x
- high energy limit

Parton Branching method

- Novel method to solve the TMD evolution equation
- fully exclusive solution
- valid at LO, NLO and NNLO

Parton Branching method and TMDs

A 1

Parton Branching method

- PB evolution equation:

$$Q^{2} \frac{\partial \hat{f}_{a}(x, Q^{2})}{\partial Q^{2}} = \sum_{b} \int_{x}^{z_{\text{max}}} dz \ P^{R}_{ab}\left(z, \alpha_{s}(Q^{2}_{r})\right) \hat{f}_{b}\left(\frac{x}{z}, Q^{2}\right) - \hat{f}_{a}(x, Q^{2}) \sum_{b} \int_{0}^{z_{\text{max}}} dz \ z P^{R}_{ba}\left(z, \alpha_{s}(Q^{2}_{r})\right)$$

- z_{max} separates the resolvable and non-resolvable phase space regions - non-resolvable solution \Rightarrow Sudakov factor:

$$\Delta_{a}(Q^{2}, Q_{0}^{2}) \equiv \exp\left[-\sum_{b} \int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \int_{0}^{z_{\max}} dz \ z P_{ba}^{R}\left(z, \alpha_{s}(Q_{r}'^{2})\right)\right]$$

Parton Branching method

 \circ evolution equation, integral form:

$$\hat{f}_{a}(x, Q^{2}) = \hat{f}_{a}(x, Q_{0}^{2}) \Delta_{a}(Q^{2}, Q_{0}^{2}) + + \int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \frac{\Delta_{a}(Q^{2}, Q_{0}^{2})}{\Delta_{a}(Q'^{2}, Q_{0}^{2})} \int_{x}^{z_{\max}} dz \sum_{b} P_{ba}^{R}\left(z, \alpha_{s}(Q_{r}'^{2})\right) \hat{f}_{b}(\frac{x}{z}, Q'^{2})$$

 \circ iterative solution:

$$\hat{f}_{a}^{(0)}(x,Q^{2}) = \hat{f}_{a}(x,Q_{0}^{2})\Delta_{a}(Q^{2},Q_{0}^{2})$$

$$\hat{f}_{a}^{(1)}(x,Q^{2}) = \hat{f}_{a}(x,Q_{0}^{2})\Delta_{a}(Q^{2},Q_{0}^{2}) +$$

$$\int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \frac{\Delta_{a}(Q^{2},Q_{0}^{2})}{\Delta_{a}(Q'^{2},Q_{0}^{2})} \int_{x}^{z_{\max}} dz \sum_{b} P_{ba}^{R}(z,\alpha_{s}) \hat{f}_{b}(\frac{x}{z},Q_{0}^{2})\Delta_{b}(Q'^{2},Q_{0}^{2})$$

$$\hat{f}_{a}^{(2)}(x,Q^{2}) = \dots$$

Parton Branching method

 \circ evolution equation, integral form:

$$\hat{f}_{a}(x, Q^{2}) = \hat{f}_{a}(x, Q_{0}^{2}) \Delta_{a}(Q^{2}, Q_{0}^{2}) + + \int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \frac{\Delta_{a}(Q^{2}, Q_{0}^{2})}{\Delta_{a}(Q'^{2}, Q_{0}^{2})} \int_{x}^{z_{\max}} dz \sum_{b} P_{ba}^{R}\left(z, \alpha_{s}(Q_{r}'^{2})\right) \hat{f}_{b}(\frac{x}{z}, Q'^{2})$$

 \circ iterative solution:

$$\hat{f}_{a}^{(0)}(x,Q^{2}) = \hat{f}_{a}(x,Q_{0}^{2})\Delta_{a}(Q^{2},Q_{0}^{2})$$

$$\hat{f}_{a}^{(1)}(x,Q^{2}) = \hat{f}_{a}(x,Q_{0}^{2})\Delta_{a}(Q^{2},Q_{0}^{2}) +$$

$$\int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \frac{\Delta_{a}(Q^{2},Q_{0}^{2})}{\Delta_{a}(Q'^{2},Q_{0}^{2})} \int_{x}^{z_{\max}} dz \sum_{b} P_{ba}^{R}(z,\alpha_{s}) \hat{f}_{b}(\frac{x}{z},Q_{0}^{2})\Delta_{b}(Q'^{2},Q_{0}^{2})$$

$$\hat{f}_{a}^{(2)}(x,Q^{2}) = \dots$$

 \circ example: first iteration, a, b = g

$$\hat{f}_{g}^{(1)}(x, Q^{2}) = \hat{f}_{g}(x, Q_{0}^{2})\Delta_{g}(Q^{2}, Q_{0}^{2}) + + \int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \frac{\Delta_{g}(Q^{2}, Q_{0}^{2})}{\Delta_{g}(Q'^{2}, Q_{0}^{2})} \int_{x}^{z_{\max}} dz P_{gg}^{R}(z, \alpha_{s}) \hat{f}_{g}(\frac{x}{z}, Q_{0}^{2})\Delta_{g}(Q'^{2}, Q_{0}^{2})$$

▶ ★ 圖 ▶ ★ 国 ▶ ★ 国 ▶

æ

 \circ example: first iteration, a,b=g

$$\hat{f}_{g}^{(1)}(x,Q^{2}) = \hat{f}_{g}(x,Q_{0}^{2})\Delta_{g}(Q^{2},Q_{0}^{2}) + \int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \frac{\Delta_{g}(Q^{2},Q_{0}^{2})}{\Delta_{g}(Q'^{2},Q_{0}^{2})} \int_{x}^{z_{\max}} dz P_{gg}^{R}(z,\alpha_{s}) \hat{f}_{g}(\frac{x}{z},Q_{0}^{2})\Delta_{g}(Q'^{2},Q_{0}^{2})$$

 \circ example: first iteration, a,b=g

$$\hat{f}_{g}^{(1)}(x,Q^{2}) = \hat{f}_{g}(x,Q_{0}^{2})\Delta_{g}(Q^{2},Q_{0}^{2}) + \int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \frac{\Delta_{g}(Q^{2},Q_{0}^{2})}{\Delta_{g}(Q'^{2},Q_{0}^{2})} \int_{x}^{z_{\max}} dz P_{gg}^{R}(z,\alpha_{s}) \hat{f}_{g}(\frac{x}{z},Q_{0}^{2})\Delta_{g}(Q'^{2},Q_{0}^{2})$$

▶ **∢** 🗇 ▶

 \circ example: first iteration, a, b = g

$$\hat{f}_{g}^{(1)}(x,Q^{2}) = \hat{f}_{g}(x,Q_{0}^{2})\Delta_{g}(Q^{2},Q_{0}^{2}) + \int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \frac{\Delta_{g}(Q^{2},Q_{0}^{2})}{\Delta_{g}(Q'^{2},Q_{0}^{2})} \int_{x}^{z_{\max}} dz P_{gg}^{R}(z,\alpha_{s}) \hat{f}_{g}(\frac{x}{z},Q_{0}^{2})\Delta_{g}(Q'^{2},Q_{0}^{2})$$

 \circ example: first iteration, a, b = g

$$\hat{f}_{g}^{(1)}(x,Q^{2}) = \hat{f}_{g}(x,Q_{0}^{2})\Delta_{g}(Q^{2},Q_{0}^{2}) + \int_{Q_{0}^{2}}^{Q^{2}} \frac{dQ'^{2}}{Q'^{2}} \frac{\Delta_{g}(Q^{2},Q_{0}^{2})}{\Delta_{g}(Q'^{2},Q_{0}^{2})} \int_{x}^{z_{\max}} dz P_{gg}^{R}(z,\alpha_{s}) \hat{f}_{g}(\frac{x}{z},Q_{0}^{2})\Delta_{g}(Q'^{2},Q_{0}^{2})$$

PB iterative solution:

- kinematics of the splittings is known
- cumulative k_T of the branchings \Rightarrow TMD
- physics \rightarrow evolution variables to splitting kinematics mapping

Validation with QCDnum at NLO

- z_{max} large \Rightarrow good agreement!

Mapping $z, p_T \rightarrow Q, Q_r$

Mapping $z, p_T \rightarrow Q, Q_r$

 \circ renormalization scale at the splitting vertex Q_r :

 $Q_r = Q$ $Q_r = p_T$ (under the aforementioned coherence assumption)

Image: A image: A

æ

DIS measurements from HERA I+IIkinematic range:

 $3.5 < Q^2 < 50000 \,{
m GeV}^2$, $4 \cdot 10^5 < x < 0.65$

• fitting procedure in a nutshell:

DIS measurements from HERA I+II
 kinematic range:

 $3.5 < Q^2 < 50000 \,{
m GeV}^2$, $4 \cdot 10^5 < x < 0.65$

• fitting procedure in a nutshell:

- parametrize the integrated distribution at Q_0

DIS measurements from HERA I+II
 kinematic range:

 $3.5 < Q^2 < 50000 \,{\rm GeV}^2$, $4 \cdot 10^5 < x < 0.65$

- fitting procedure in a nutshell:
 - parametrize the integrated distribution at Q_0
 - with the PB method evolve the TMD to $Q>Q_0$

(implemented in xFitter)

- DIS measurements from HERA I+II
- kinematic range:

 $3.5 < Q^2 < 50000 {
m GeV}^2$, $4 \cdot 10^5 < x < 0.65$

- fitting procedure in a nutshell:
 - parametrize the integrated distribution at Q_0
 - with the PB method evolve the TMD to $Q>Q_0$

(implemented in xFitter)

- fit the measurements and extract the initial parametrization

- DIS measurements from HERA I+II
- kinematic range:

 $3.5 < Q^2 < 50000 {
m GeV}^2$, $4 \cdot 10^5 < x < 0.65$

• fitting procedure in a nutshell:

- parametrize the integrated distribution at Q_0
- with the PB method evolve the TMD to $Q>Q_0$

(implemented in xFitter)

- fit the measurements and extract the initial parametrization

- store the TMD in a grid for later use

(TMDlib, complementary slides)

- DIS measurements from HERA I+II
- kinematic range:

 $3.5 < Q^2 < 50000 {
m GeV}^2$, $4 \cdot 10^5 < x < 0.65$

• fitting procedure in a nutshell:

- parametrize the integrated distribution at Q_0
- with the PB method evolve the TMD to $Q>Q_0$

(implemented in xFitter)

- fit the measurements and extract the initial parametrization

- store the TMD in a grid for later use

(TMDlib, complementary slides)

 \Rightarrow First TMD fit to precision data!

Parton density uncertainty sources

• experimental uncertainty \rightarrow Hessian method $\Delta \chi^2 = 1$ • model dependence \rightarrow b, c masses at Q_0

 $+ Q_r$ threshold for set 2

A. Bermudez

- set 2 disagrees at small x for inclusive charm

Details

- F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik. Soft-gluon resolution scale in QCD evolution equations. Phys. Lett., B772:446451, 2017

- F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik. Collinear and TMD Quark and Gluon Densities from Parton Branching Solution of QCD Evolution Equations. JHEP, 01:070, 2018.

- A. Bermudez-Martinez, P. Connor, F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik. Collinear and TMD parton densities determined from fts to HERA DIS measurements, DESY-18-042

Application: low momentum transfer

- $Q = p_{\rm T}/(1-z), \ Q_r = Q$

A. Bermudez

- $Q = p_T/(1-z)$, $Q_r = Q$ - $Q = p_T/(1-z)$, $Q_r = p_T$ (under angular ordering)

- $Q = p_T/(1-z)$, $Q_r = Q$ $Q = p_T/(1-z)$, $Q_r = p_T$ (under angular ordering)
- shape described by both variants

A. Bermudez

- $Q = p_T/(1-z)$, $Q_r = Q$ - $Q = p_T/(1-z)$, $Q_r = p_T$ (under angular ordering)

- shape described by both variants

- low $p_T^{\ell\ell}$ better described by $Q_r = p_T$

Application: high momentum transfer

Dijets $\Delta \phi_{1,2}$

- opens up the ME phase space

Dijets $\Delta \phi_{1,2}$

- opens up the ME phase space
- catches higher-order contributions

Dijets $\Delta \phi_{1,2}$

- opens up the ME phase space
- catches higher-order contributions
- \Rightarrow smaller parton shower correction needed

Summary and conclusions

 \circ novel TMD evolution equation and new method (PB) to solve it

- PB method provides full access to splitting kinematics $\Rightarrow k_T$
- method consistency checked in integrated PDFs
- PB solution at LO, NLO, NNLO
- TMD determined, no extra parameters
- \circ first TMD fit to data, including uncertainty band
 - TMD evolution implemented in xFitter
- \circ application to LHC processes:
- DY low p_T spectrum without extra parameters
- dijet $\Delta \phi_{1,2}$: TMD enhances ME phase space
- dijet $\Delta\phi_{1,2}:$ PS correction drastically reduced \Rightarrow TMD catches higher order effects

Complementary slides

< 4 ► >

Where to find TMDs ? TMDlib and TMDplotter

- TMDlib proposed in 2014 as part of REF workshop and developed since
- combine and collect different ansaetze and approaches:

http://tmd.hepforge.org/ and http://tmdplotter.desy.de

 TMDlib: a library of parametrization of different TMDs and uPDFs (similar to LHApdf)

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions, *F. Hautmann et al.* arXiv 1408.3015, Eur. Phys. J., C 74(12):3220, 2014.

 Also integrated pdfs (including photon pdf are available via LHAPDF)

(日) (同) (三) (三)

• Feedback and comments from community is needed - just use it !

Validation of method with QCDnum at NLO

- Very good agreement with NLO QCDnum over all x and μ^2
 - the same approach work also at NNLO !

MCEG: TMDs, parton shower

- basic elements are:
 - Matrix Elements:
 - ➔ on shell/off shell
 - PDFs
 - → TMDs
 - Parton Shower
 - ➔ following TMDs for initial state !
- Proton remnant and hadronization handled by standard hadronization program, e.g. PYTHIA

- Parton shower with TMDs follows exactly the evolution of the TMD
 - no (!) free parameter in shower
 - resolvable branchings and calculation of k_T defined in TMD
 - no adjustment of kinematics during/after shower