H→bb̄ and H→cc̄ measurements from CMS

A. de Wit (DESY) on behalf of the CMS collaboration

Outline

- Introduction
- Higgs-b-quark coupling
 - VH, H→bb (2017 dataset)
 - Combination of $H \rightarrow b\overline{b}$ analyses
 - H→bb prospects at HL-LHC
- Higgs-c-quark coupling
 - Differential distributions
 - Rare decays
- Summary & outlook

Why H→bb and H→cc?

- Largest Higgs boson branching ratio is into bb: 58%
 - Largest contribution to total Higgs boson width
 - Access to down-type quark Yukawa coupling
- Higgs boson branching ratio into cc: ~3%
 - Access to 2nd generation quark coupling

Previous results

JHEP08(2016)045

PLB 780 (2018) 501-532

- Combining 7+8 TeV ATLAS and CMS results yielded a best-fit $\mu_{bb} = \sigma^* BR/(\sigma_{SM} * BR_{SM}) = 0.7 \frac{+0.29}{-0.27}$
- CMS VH($b\overline{b}$) analysis at 13 TeV using the 2016 dataset: $\mu = 1.19 \frac{+0.21}{-0.20}$ (stat) $\frac{+0.34}{-0.32}$ (syst)
- Combined with CMS Run-1 VH(bb): µ=1.06^{+0.31}_{-0.29} (stat+syst): Evidence for H→bb

Higgs-b-quark coupling

H→bb̄ at CMS in Run-2

All major production modes covered in the $H \rightarrow b\overline{b}$ decay channel at CMS!

A. de Wit

H→bb at CMS in Run-2

All major production modes covered in the $H \rightarrow b\overline{b}$ decay channel at CMS!

A. de Wit

VH, H→bb

Overview

- Higgs boson produced in association with a vector boson
 - Leptonically decaying vector boson gives a clean signature to tag → helpful for online selection
 - Much reduced background from multijet production
- Most sensitive channel for H→bb despite relatively small production cross section
- Backgrounds:

A. de Wit

7

VH, H→bb

Analysis strategy

- Select events with 0, 1, or 2 leptons (e/µ), consistent with W/Z decay, and 2 b-tagged jets
 - b-jets and vector boson produced back-to-back + increased sensitivity for enhanced Higgs boson p_T → categorise based on V p_T
- Improve the m_{bb} resolution
 - using multivariate regression techniques
 - using kinematic fit in 2-lepton channel
- Use a Deep Neural Network (DNN) to increase the separation between signal and background
 - Variables include V p_T, m_{bb}, jet kinematics, b-tagging information, ...
- **Fit for signal** using the DNN as final discriminant, simultaneously fitting control regions to constrain the major backgrounds
- Validate the analysis strategy using a di-boson analysis as well as a fit of the di-b mass distribution.

	0-lepton	1-lepton	2-lepton		
V	> 170	> 150	50-150	> 150	
рт	GeV	GeV	GeV	GeV	

Background normalisation

- Example: constraining background normalisations in 1-lepton channel
 - tt and W+LF background: singlebin control regions
 - W+HF background: DNN multiclassifier to distinguish between background components
- Similar strategy in 0-lepton channel, 2-lepton channel Z+HF control region is more pure and we fit the b-tagging discriminator distribution in 2 bins.

9

+Normalisation in W+LF

Background normalisation

- Example: constraining background normalisations in 1-lepton channel
 - tt and W+LF background: singlebin control regions
 - W+HF background: DNN multiclassifier to distinguish between background components
- Similar strategy in 0-lepton channel,
 2-lepton channel Z+HF control region
 is more pure and we fit the b-tagging
 discriminator distribution in 2 bins.

+Normalisation in tt enriched CR

A closer look at the signal regions

A closer look at the signal regions

Results

- Result of 2017 analysis: μ=1.08 ± 0.26 (stat.) ± 0.23 (syst.)
 - Compatible with SM expectation
- Total uncertainty ~0.34, statistical and systematic component of similar order
 - Major sources of systematic uncertainty: background normalisation, size of simulated samples, b-tagging

Uncertainty source	$\Delta \mu$	
Statistical	+0.26	-0.26
Normalization of backgrounds	+0.12	-0.12
Experimental	+0.16	-0.15
b-tagging efficiency and misid	+0.09	-0.08
V+jets modeling	+0.08	-0.07
Jet energy scale and resolution	+0.05	-0.05
Lepton identification	+0.02	-0.01
Luminosity	+0.03	-0.03
Other experimental uncertainties	+0.06	-0.05
MC sample size	+0.12	-0.12
Theory	+0.11	-0.09
Background modeling	+0.08	-0.08
Signal modeling	+0.07	-0.04
Total	+0.35	-0.33

Combination of VH, H→bb analyses

- Combining with VH(bb) analysis on 2016 dataset and Run 1 VH(bb):
 - μ=1.01±0.17 (stat.) ± 0.14 (syst.)
 - Significance 4.8σ (4.9σ) obs (exp)

Combination of H→bb analyses

- Combine VH(bb) results with:
 - Run 1 + 2016 ttH(bb)
 - 2016 boosted $ggH(b\overline{b})$
 - Run 1 VBF (bb)
- μ=1.04 ± 0.14 (stat) ± 0.14 (syst)
- observed (expected) significance 5.6σ (5.5σ)

CMS-PAS-FTR-18-011

VH, H→bb̄ at HL-LHC

- Consider various scenarios for uncertainties:
 - With Run-2 systematic uncertainties: uncertainties as in Run 2 (S1)
 - With YR18 systematic uncertainties: most experimental uncertainties scale down with sqrt(L), until a lower limit is reached. Theoretical uncertainties are ~halved. (S2)
 - Stat. Only.: No systematic uncertainties considered
- At 3 ab⁻¹, measurement will be driven by theoretical uncertainties, ggZH QCD scale uncertainty becomes important.
- All channels contribute ~equally: challenge experimentally to maintain trigger thresholds.
- Effect of changing b-tagging efficiency is non-negligible.

	S1	S2	
Total uncertainty	7.3%	5.1%	
Signal theory uncertainty	5.4%	2.6%	_
Inclusive	4.6%	2.2%	
Acceptance	2.7%	1.3%	
Background theory uncertainty	2.8%	2.3%	
Experimental uncertainty	2.6%	2.2%	
b-tagging	2.2%	2.0%	
JES and JER	0.7%	0.6%	
Statistical uncertainty	3.2%	3.2%	

0.2

0.1

0

Expected uncertainty

0.3

0.4

0.5

Higgs-c-quark coupling

CMS-PAS-HIG-17-028

Higgs-charm coupling from differential distributions

- Using the κ -model to describe effective coupling between Higgs boson and other particles, the $p_T(H)$ spectrum is sensitive to modifications in κ_b and κ_c .
 - Apply this to $p_T(H)$ differential measurements in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$
- Two assumptions tested:
 - Branching ratios depend on κ_b and κ_c : -4.3< κ_c < 4.3 (exp: -5.4 < κ_c < 5.3) (±1 σ interval)
 - Branching ratios freely floating (no constraints from total Higgs width and overall normalisation): -18.0 < κ_c < 22.9 (exp: -15.7 < κ_c < 19.3) (±1σ interval)

arXiv:1810.10056, sub'd to EPJC

Higgs-charm coupling from rare Higgs decays

- Higgs boson can decay to γ and a cc̄ resonance (e.g. J/ψ) → small SM branching ratio (3·10⁻⁶)
- Decay does not always include the H-c vertex.
- Search for H→γJ/ψ and Z→γJ/ψ, performed using 35.9 fb⁻¹ collected in 2016
- Use μμγ invariant mass as discriminating variable in both cases, with different signal mass regions to target H or Z decay.
- H→γJ/ψ results:
 - Observed (expected) limit 260 x SM (170 x SM)
 - Combining with 8 TeV analysis: 220 x SM (160 x SM)

Summary and outlook

- Presented $H \rightarrow b\overline{b}$ results and constraints on Higgs-c coupling from CMS
- H→bb observation in CMS by combination of analyses targeting all major Higgs boson production modes, sensitivity driven by VH and ttH
 - We are entering the precision era → shift focus towards more differential measurements
- Constraints on Higgs-c coupling from differential distributions and searches for $H\rightarrow\gamma J/\psi$
 - Direct $H \rightarrow c\overline{c}$ results coming

ggH, H→bb Overview

- Largest production cross section, but suffers from overwhelming background from heavy flavour multijet production
 - Up to recently a search for ggH production in the H→bb decay channel would have been deemed impossible
- At high H p_T the two b-jets are likely to merge into a single 'fat' jet → exploit di-b-jet substructure to make an inclusive H→bb search at high H p_T possible

Inclusive (ggH) H→bb

- Analysis performed using 2016 dataset
- Require a high p_T (>450 GeV) wide-cone jet and exploit 2-prong jet substructure and btagging information of the subjects to reduce multijet background
- Soft radiation removed from candidate jet to provide better separation between signal and multijet background when using the jet mass shape
- Backgrounds mostly from multijet production, with smaller contributions from tt, W and Z production
 - **Multijet** background estimated from a data sample with double b-tag requirement inverted. Simultaneous fit with SR
- Result: μ_H = 2.3 ± 1.5 (stat.) +1-0.4 (syst)

Improving di-b mass resolution

- In all channels, di-b mass resolution improved with DNN b-jet energy regression
- In 2-lepton channel, additional improvement from use of kinematic fit
- Validation using p_T(jj)/p_T(II) in 2-lepton Z+HF control region → data described well by simulation after all techniques

VH, H→bb̄ cross checks

Extraction of VZ, Z→bb

- Used to validate MVA methods: re-train DNN to separate VZ, Z→bb from other backgrounds, extract signal strength
- μ=1.05±0.22: compatible with SM expectation

Di-b mass analysis

- Fit the di-b mass distribution instead of DNN output
- Combination of analyses using 2016+2017 dataset, with backgrounds other than VZ subtracted

A. de Wit

Talking points

- Talking points:
 - Interest from the theory community in measuring ggZH and qqZH separately (beyond STXS)?
 - In relation to the above point: are there possible solutions for the large ggZH QCD scale uncertainty?
 - Most interesting differential distributions for VH? (H p_T, m_{VH}, any others?)
 - Are there any other avenues that we are not currently exploring but should be?