Recent differential tt cross section results from CMS James Keaveney, on behalf of CMS

tt production at the lhc

QCD process with significant higher-order corrections
probe pQCD

tt production at the lhc

soft radiation in production and decay
 constrain modelling of parton shower and hadronisation

tt production at the lhc

tt signature similar to many new physics signals
 constrain NP & backgrounds for searches

tt production at the lhc

if new physics lives at large scale Λ

- manifested in virtual effects only
- constrain EFT with precision measurements

cross section definition phase space covered fiducial phase space normalised full phase absolute Absolute vs. normalised measurements absolute measurements reveal maximal information normalised measurements precisely probe shapes . porton. level - cancellations of th. and exp. uncertainties particle. detector .level level Top quark definition

the latest from CMS

• two public results in **Nov. 2018** based on full 2016 data and the dilepton channel

– arXiv:1811.06625

- comprehensive set of **1D** differential cross sections
- (parton-level, particle-level) X (absolute/normalised) = 94 distributions
- testing of latest higher order predictions e.g., NNLO+ α_{EW}^3 , NNLO+NNLL
- reinterpretation in EFT framework and extraction of charge asymmetry

- CMS-PAS-18-004

- 2D and 3D normalised differential cross sections
- e.g. y_{tt} vs m_{tt} vs N_{jets}
- deep probe of NLO modelling
- simultaneous extraction of $m_{t,r} \alpha_s$ and PDF

Measurements of t \bar{t} differential cross sections in proton-proton collisions at $\sqrt{s} = 13$ TeV using events containing two leptons

The CMS Collaboration

arXiv:1811.06625

strategy

fundamental goal

• measure the tt process in as much detail as possible using **<u>1D distributions</u>**

the basic method

- select dilepton events (minimal backgrounds)
- kinematic reconstruction to define top and tt systems
- cut+count methodology to measure diff. cross sections in bins
 - backgrounds mainly from simulation, except data-driven z+jets
- unfold to particle and parton levels
- measure absolute and normalised distributions

reinterpretations

- extract charge asymmetries
- constrain TOP CMDM in EFT framework

arXiv:1811.06625

data modelling

event selection

- **OR** of single and dilepton triggers
- leptons: 2 opp-charged: ee, µµ, eµ
 - $p_{T1} > 25 \text{ GeV}, p_{T2} > 20 \text{ GeV}, |\eta| < 2.4$
 - tight ID for electrons and muons
 - m₁₁ > 20 GeV
 - ee, $\mu\mu$ channels: Z veto: $|m_7 m_{\mu}| > 15 \text{ GeV}$

CMS

tt+Z/W

Uncertainty

quark pairs / 50 GeV

9

Data Pred.

jets:

- $N_{iets} \ge 2$, (p_T > 30 GeV, $|\eta| < 2.4$)
- $\Delta R(l, jet) > 0.4$
- **b-tags:** \geq 1 b-tagged jets
- **MET:** ee, $\mu\mu$ channels: MET > 40 GeV
- kinematic reconstruction
 - event excluded if no solution found

measuring differential cross sections

effects in and out of bins:

purity (p_i) & stability (s_i) \geq ~40%

also monitor resolutions, statistical power per bin

unfolding

regularized unfolding suppresses sharp fluctuations

phase space

correct back to parton or particle level in full or fiducial phase space

final result

- "normallised" distributions
- normalized to one
- "absolute" distributions
- raw diff. cross section in bin

arXiv:1811.06625

results - top quark kinematics

- pt (top) distribution disagrees with NLO MC predictions
- improved agreement with NNLO predictions

- total uncertainty 5-8%
- strongly systematically limited
- JES dominates

results – tt kinematics

 m (tt) all predictions disagree with data at very low and high m(tt)

- total uncertainty 9-22%
- JES, ISR modeling dominate

reinterpretations – top quark CMDM in EFT

- in EFTs, dim-6 operators model high-scale new physics
- **O**_{tG} models the top quark chromomagnetic dipole moment (CMDM)
 - anomalous CMDM arises in many models of new physics

- O_{tG} modifies the gtt vertex and generates new ggtt vertex
- O_{tG} flips the chirality of the top quark
- changes in <u>rate and shape</u> of tt events
 - alters spin correlations of top quarks
 - delta phi of leptons ($\Delta \varphi$ (II)) sensitive to O_{tG}
- particle-level data preferred (minimal model depedence)

strategy:

constrain CMDM with absolute particle-level, $\Delta \varphi(II)$ differential cross section

reinterpretations - top quark CMDM in EFT

- signal modelled at full NLO with MG5_aMC@NLO
- χ^2 minimisation used to extract best-fit value and CL on C_{tG}/ Λ^2
- slight numerical improvement on previous constraints
- particle level means less model dependence in data
 - ease of integration into future global analysis

reinterpretations – charge asymmetries

arXiv:1811.06625

- charge asymmetries (A_C) sensitive to new physics contributions
- measurements of $\Delta |y|$ (tt) and $\Delta |\eta|$ (II) allow $A_{\rm C}$ extraction

$$A_{\rm c}^{\rm t\bar{t}} = \frac{\sigma_{\rm t\bar{t}}(\Delta|y|({\rm t},\bar{{\rm t}})>0) - \sigma_{\rm t\bar{t}}(\Delta|y|({\rm t},\bar{{\rm t}})<0)}{\sigma_{\rm t\bar{t}}(\Delta|y|({\rm t},\bar{{\rm t}})>0) + \sigma_{\rm t\bar{t}}(\Delta|y|({\rm t},\bar{{\rm t}})<0)}, \quad A_{\rm c}^{\rm l\bar{l}} = \frac{\sigma_{\rm t\bar{t}}(\Delta|\eta|(1,\bar{{\rm l}})>0) - \sigma_{\rm t\bar{t}}(\Delta|\eta|(1,\bar{{\rm l}})<0)}{\sigma_{\rm t\bar{t}}(\Delta|\eta|(1,\bar{{\rm l}})>0) + \sigma_{\rm t\bar{t}}(\Delta|\eta|(1,\bar{{\rm l}})<0)}$$

- results consistent with SM predictions:
 - NLO QCD
 - NLO QCD + EW

Measurements of normalised multi-differential cross sections for top quark pair production in pp collisions at $\sqrt{s} = 13$ TeV and simultaneous determination of the strong coupling strength, top quark pole mass and parton distribution functions

The CMS Collaboration

CMS-PAS-TOP-18-004

strategy

fundamental goal

measure normalised 2D and 3D differential tt cross sections using 2016 data

the basic method

- select dilepton events (minimal backgrounds)
- kinematic reconstruction to define top and tt systems
- cut+count methodology to measure diff. cross sections in bins
- unfold to particle and parton levels
- measure normalised distributions

reinterpretations

- extract m_t and α_s using external PDFs and tt data only
- simultaneous fit of PDFs, m_t and α_s with tt and HERA data

almost identical to 1D analysis

results – 2D cross sections

p_T (top) vs y(top)

- p_T (top) mis-modelling across y(t) range
- best description by POWHEG+HERWIG

results – 2D cross sections

y (tt) vs m(tt)

- excess at low m(tt) consistent with 1D analysis
 - no dependence of excess on y(tt)
 - best description vs m(tt) by POWHEG+HERWIG

results – 3D cross sections

y (tt) vs m(tt) vs N_{jets}

- excess at low m(tt) consistent with 1D analysis
- no dependence of excess on y(tt), N_{jets}
 - best description vs m(tt) by POWHEG+HERWIG

results – 3D cross sections

y (tt) vs m(tt) vs N_{jets}

- excess at low m(tt) consistent with 1D analysis
- no dependence of excess on y(tt), N_{jets}
 - best description vs m(tt) by POWHEG+HERWIG

reinterpretations -

m_t and α_s using external PDFs and tt data

- NLO predictions for tt +0,1,2 jets from
 - MadGraph5_aMC@NLO+aMCfast+ApplGrid+xFitter
 - PDFs and α_s from several groups via LHAPDF
 - parton->particle level corrections (<5%)

two extractions

- fix α_s , fit m_t(pole)
 - Use α_s from each PDF set
 - no significant dependence on PDF set
- fix m_t (pole), fit α_s
 - use m_t (pole) = 172.5 GeV
 - significant dependence on PDF set

CMS-PAS-TOP-18-004 35.9 fb⁻¹ (13 TeV)

<1500GeV

Data, dof=23

400<M(t

<500GeV

reinterpretations

- simultaneous (m_t, α_s , PDF) fit

CMS Preliminary

400<M(tt

<500GeV

500<M(tt

<1500GeV

300<M(tt

<400GeV

300<M(tt

<400GeV

0.2

summary & conclusions

- CMS has recently published two analyses probing tt in unprecedented detail
 - arXiv:1811.06625
 - comprehensive set of **1D** differential cross sections
 - (parton-level, particle-level) X (absolute/normalised) = 94 distributions
 - test of latest higher order predictions e.g., NNLO+ α_{FW}^3 , NNLO+NNLL
 - reinterpretation in EFT framework and extraction of charge asymmetry
 - CMS-PAS-18-004
 - 2D and 3D normalised differential cross sections
 - deep probe of NLO modelling
 - simultaneous extractions of $m_{t_{i}} \alpha_{s}$ and PDF

This data will be a crucial ingredient in future QCD, EFT fit and SM parameter extractions

systematics (experimental)

each uncertainty propagated through analysis chain individually

- sys. uncertainty in bin = difference of the changed result wrt nominal
- determined individually for each bin through variation of sys. source
- applying b-tagging efficiency dependent correction for systematic uncertainty estimation due to theory related sources, JES, and JER
- following recommendations in all cases

experimental uncertainties considered in this analysis

- trigger eff., lepton ID/Iso, kin. reco. eff.: vary accordingly to uncertainties
- JES (individual sources), JER, b-tagging: prescription by POGs
 - **b-tagging**: additional variations depending on jet kinematics
- unclustered MET variations
- pile-up reweighting: : +/- 4.6% on min-bias cross section
- lumi: 2.5% variation
- background normalisations: 30% variations

results – tt kinematics

 pt (tt) all predictions disagree with data at large pt (tt)

• total uncertainty 6-12%

• MET, JES, modeling dominates

arXiv:1811.06625

data modelling

event selection

- **OR** of single and dilepton triggers
- leptons: 2 opp-charged: ee, μμ, eμ
 - $p_{T1} > 25 \text{ GeV}, p_{T2} > 20 \text{ GeV}, |\eta| < 2.4$
 - tight ID for electrons and muons
 - m_{ll} > 20 GeV
 - ee, $\mu\mu$ channels: Z veto: $|m_Z m_{\parallel}| > 15$ GeV

• jets:

- $N_{jets} \ge 2$, ($p_T > 30 \text{ GeV}$, $|\eta| < 2.4$)
- ΔR(l, jet) > 0.4
- **b-tags:** \geq 1 b-tagged jets
- **MET:** ee, μμ channels: MET > 40 GeV
- kinematic reconstruction
 - event excluded if no solution found

mis-modelling of jet pT and multiplicity

arXiv:1811.06625

data modelling

event selection

- **OR** of single and dilepton triggers
- leptons: 2 opp-charged: ee, μμ, eμ
 - $p_{T1} > 25 \text{ GeV}, p_{T2} > 20 \text{ GeV}, |\eta| < 2.4$
 - tight ID for electrons and muons
 - m_{ll} > 20 GeV
 - ee, $\mu\mu$ channels: Z veto: $|m_Z m_{\parallel}| > 15$ GeV

• jets:

- $N_{jets} \ge 2$, ($p_T > 30 \text{ GeV}$, $|\eta| < 2.4$)
- ΔR(l, jet) > 0.4
- **b-tags:** \geq 1 b-tagged jets
- **MET:** ee, μμ channels: MET > 40 GeV
- kinematic reconstruction
 - event excluded if no solution found

mis-modelling of jet pT and multiplicity