Search for a pseudoscalar boson produced in decays of the 125 GeV Higgs boson and decaying into au leptons

S. Choudhury ³, S. Consuegra Rodríguez ¹, E. Gallo ¹, A. Kalogeropoulos ², T. Lenz ¹, *Danyer Pérez Adán* ¹, and A. Raspereza ¹

¹DESY-Hamburg, ²Princeton University, ³Indian Institute of Science

12th Annual Helmholtz Alliance Workshop on "Physics at the Terascale", 26-28 Nov. 2018

٩	• •	< E)	< 差 >	æ	୬ବନ
$H(125) \rightarrow a_1 a_1 \rightarrow 4\tau$			27/11	/2018	1 / 26

Introduction:

- This analysis focuses on 2HD+1S models, where the Higgs sector is extended by one additional singlet field
- That is realized for example in the NMSSM that solve the so-called μ -problem of the MSSM

• There exist scenarios that can have a very light a_1 state with mass in the range $2m_\tau < m_{a_1} < 2m_b$, potentially accessible in H (125) $\rightarrow a_1a_1 \rightarrow 4\tau$

Previous Search and Differences:

- (CMS Run I @ 8TeV), published on JHEP: doi:10.1007/JHEP01(2016)079
 - Focused on gluon-gluon fusion, mass range from 4 to 8 GeV
 - No significant excess, upper limits set on the signal production cross section times branching fraction

イロト イヨト イヨト イヨト

- Main differences:
 - 13 TeV & 35.9 fb⁻¹
 - Mass range extended up to 15 GeV
 - All production modes (ggH, VBF, VH, ttH) and $H(125) \rightarrow a_1a_1 \rightarrow 2\mu 2\tau$ channel included
 - More robust and reliable background model

Dany	Pérez	Adán

27/11/2018 3 / 26

Signal Signature and Analysis Strategy

- probed mass range is $4 < m_{a_1} < 15 \text{ GeV}$
- exploit a₁ → τ_µτ_{1-prong} decays (by 1-prong we mean 1-prong hadronicaly or leptonicaly)
- primarily targets ggH but other production modes are taken into account

イロト イポト イヨト イヨト

- highly boosted a1 bosons
 - \rightarrow collimated decay products
 - \rightarrow non-isolated leptons in final state
- selection of same sign (SS) muons separated in $[\eta, \phi]$ plane
- each muon is accompanied by one particle with charge opposite to the charge of muon

Dataset, objects and selection

- Dataset:
 - Dataset corresponding to an integrated luminosity of 35.9 fb^{-1} collected by the CMS experiment during proton-proton collision at 13 TeV
- Objects and Selection:
 - MUONS:
 - Events are triggered if they contain two same sign muons. Those muons are required to pass the following
 offline selection:
 - *p*_T > 9 GeV, |η| < 2.4
 - *p*_T > 18 GeV, |η| < 2.4
 - no isolation requirement imposed
 - impact parameter w.r.t. primary vertex
 - $|d_0| < 0.5 \text{ mm}$ $|d_Z| < 1.0 \text{ mm}$
 - $\Delta R(\mu_1, \mu_2) > 2$
 - If # same-sign muon pair>1 \rightarrow pair with the largest sum of muons p_T chosen
 - TRACKS:
 - Very good quality tracks are selected and the following requirements are imposed:
 - p_T(trk) > 1 GeV , |η| < 2.4
 - Loose impact parameter cuts: $|d_{xy}| < 1.0 \text{ cm}$, $|d_z| < 1.0 \text{ cm}$

イロン イヨン イヨン イヨン

Same-sign-muons selection

• Control plots: (QCD scaled by 0.52)

Danyer Pérez Adár

 $H(125) \rightarrow a_1 a_1 \rightarrow 4\tau$

27/11/2018 6 / 26

Isolation requirement

- Each muon required to have only one close-by track within predefined isolation cone ΔR_{lso}
- Optimized value of isolation cone : $\Delta R_{Iso} = 0.5$

- Loose impact parameter requirements on the tracks designed to suppress background events in which a heavy-flavour hadron decays into a muon and several charged particles
- Background events with tracks displaced from the PV, but still satisfying the loose track impact parameter criteria, rejected by the requirement of exactly one track accompanying the muon

Selection of 1-prong tau decay candidate

- For the selection of the 1-prong tau-lepton decay candidates the single track around each muon must fulfill the additional selection criteria:
 - net charge of track and close-by muon $q_{\mu} + q_{trk} = 0$
 - $p_T(trk) > 2.5$ GeV, $|\eta| < 2.4$
 - ullet $|d_{xy}| < 0.02 ext{ cm}$, $|d_z| < 0.04 ext{ cm}$

- Corrections to simulation to account for differences between data and MC:
 - Pileup reweighting
 - The MC distribution of the number of primary vertices is reweighted to match the number of pile-up interactions in data
 - Muon ID, tracking and trigger efficiency
 - Scale Factors (SF) are applied to simulated samples
 - Combined muon-track isolation and one-prong tau decay identification efficiency
 - Measurement is done with $Z
 ightarrow au_{\mu} au_{1-prong}$ sample
 - SF are derived by fitting $m_{\mu+trk}$ distribution in bins of track p_T
 - Higgs *p*_T reweighting
 - Simulated samples (LO PYTHIA8) reweighted to match higher order predictions for H (125) p_T spectrum and, therefore, to improve estimate of signal acceptance

Danver	Perez	

<ロ> (日) (日) (日) (日) (日)

• Selection of two isolated muon-track pairs

Sample	Number of events
Data	2035
QCD multijet (MC)	$1950{\pm}650$
$t\overline{t} + single-top (MC)$	12.0±2.2
Electroweak (MC)	$10.0 {\pm} 1.2$

$$\frac{\Gamma(a_1 \to \mu\mu)}{\Gamma(a_1 \to \tau\tau)} = \frac{m_{\mu}^2}{m_{\tau}^2 \sqrt{1 - (2m_{\tau}/m_{a_1})^2}} \quad (1)$$

<ロ> (日) (日) (日) (日) (日)

Benchmark value of BR: $B(H(125) \rightarrow a_1a_1) \cdot B^2(a_1 \rightarrow \tau\tau) = 20\%$

$pp \rightarrow H(125) + X, H(125) \rightarrow a_1a_1$							
Signal process		a1 a1	$\rightarrow 4\tau$		$a_1a_1 ightarrow 2\mu 2 au$		
	ggH	VBF	VH	ttH	ggH		
4	6.69 ± 0.35	5.23 ± 0.67	5.21 ± 0.92	4.48 ± 0.86	28.10 ± 0.45		
7	5.11 ± 0.31	4.02 ± 0.57	3.85 ± 0.82	1.98 ± 0.56	21.72 ± 0.45		
10	3.02 ± 0.24	1.66 ± 0.38	2.75 ± 0.68	1.44 ± 0.48	14.82 ± 0.38		
15	0.44 ± 0.09	0.17 ± 0.13	0.34 ± 0.26	1.34 ± 0.48	1.09 ± 0.10		
		Number of	signal events				
4	117.7 ± 6.1	7.16 ± 0.91	4.25 ± 0.75	0.82 ± 0.16	48.2 ± 0.8		
7	89.8±5.4	5.50 ± 0.79	3.14 ± 0.67	0.36 ± 0.10	19.9 ± 0.4		
10	53.0 ± 4.2	2.28 ± 0.51	2.24 ± 0.56	0.26 ± 0.09	12.5 ± 0.3		
15	7.7 ± 1.5	$0.23 {\pm} 0.18$	$0.28 {\pm} 0.21$	$0.25 {\pm} 0.09$	0.88 ± 0.08		

	Signal	accepta	nce \times	10 ³	
$DD \rightarrow$	H(125)	+ X.	H(1;	$25) \rightarrow$	aı

27/11/2018 10 / 26 • Procedure followed for signal extraction:

-Reconstruct the invariant mass of each pair of selected muon and nearby track, $m_1 = m(\mu_1 - trk_1)$ and $m_2 = m(\mu_2 - trk_2)$ -2D distribution filled with ordered values of masses, $m_2 > m_1$

-Unroll the 2D template into a 1D distribution containing in total $N \times (N+1)/2 = 6 \times (6+1)/2 = 21$ bins

イロト イヨト イヨト イヨト

• Extract signal by means of a binned Max-likelihood fit applied to the unrolled 2D (m_1, m_2) distribution; performed with background and signal normalizations floating freely \rightarrow pure shape analysis

1)an		Per		
	,			

Background estimation

- $\bullet\,$ QCD multijet events dominate the final selected sample (other backgrounds constitute \sim 1%)
- Modeling of the background shape (2D probability density function) done with data
- Background model, constructed as:

 $f_{2D}(m_1, m_2) = C(m_1, m_2) \cdot (f_{1D}(m_1) \cdot f_{1D}(m_2))$

• translating it into binned 2D template filled with ordered values $m_2 > m_1$

$$m_1 \rightarrow i \qquad m_2 \rightarrow j$$

•••

 $f_{2D}(i,j) = C(i,j) \cdot (f_{1D}(i) \cdot f_{1D}(j))^{sym}$

$$(f_{1D}(i) \cdot f_{1D}(j))^{sym} = \begin{cases} f_{1D}(i) \cdot f_{1D}(i) & j = i \\ \\ f_{1D}(i) \cdot f_{1D}(j) + f_{1D}(j) \cdot f_{1D}(i) & j > i \end{cases}$$

	4 = 6	4 = 6		¥)0(¥
			- The second sec	

27/11/2018

12 / 26

Background estimation

• Background model, constructed as:

$$f_{2D}(i,j) = C(i,j) \cdot (f_{1D}(i) \cdot f_{1D}(j))$$

$$(2)$$

- C(i,j): calculated in Loose-Iso control region in data
 - each of the muon-tracks pairs allowed to be accompanied by 2 or 3 soft tracks
 - $C(i,j) = \frac{f_{2D}(i,j)}{f_{1D}(i)f_{1D}(j)}$

- f_{1D} : derived from sideband region N23 in data
 - one of muon-track pairs passes nominal selection (isolation required)
 - the other pair is non-isolated (muon has 2 or 3 close-by soft tracks)

Verification of these assumptions with simulation not conclusive (limited size of MC samples)

• C(i,j):

A dedicated MC study was performed

• f_{1D}:

Test performed with an additional control sample

<ロ> (日) (日) (日) (日) (日)

1)any	/er	Perez	Adar

Validation of f_{1D}

- Shapes of invariant mass distributions of the first muon and the softest or hardest accompanying track compared for the two different isolation requirements on the second muon
- Varying the # of tracks around μ_2 does not affect the shape of f_{1D} for μ_1 , allowing use of N23 to derive f_{1D}

Validation of f_{1D}

- Potential dependence of the muon-track invariant mass on the isolation requirement imposed is verified
- Additional comparison of shapes in the control regions N23 and N45 (analogous to N23)
- Difference is taken as a shape uncertainty in the f_{1D} template

- This difference is related to the fact that the selected samples in N23 and N45 regions have different fractions of non-QCD contributions
 - Electroweak processes like W/Z + Jets and tt contribute mainly at higher values of the muon-track invariant mass

	Pérez	Adán

27/11/2018 15 / 26

- Normalized invariant mass distribution of the muon-track system for events passing the signal selection
- Showing signal simulations for four mass hypothesis, $m_{a_1} = 4$, $m_{a_1} = 7$, $m_{a_1} = 10$ and $m_{a_1} = 15$ GeV (dashed histograms)

Image: A math a math

Validation of C(i,j)

- Direct validation impossible due to limited statistics of simulated muon-enriched QCD multijet samples
 - Difference in C(i, j) between signal region and background sideband assessed with a dedicated simulation study
 - MC sample used to compute probability of parton of flavor f to yield the signal topology of $a_1 \rightarrow \tau_\mu \tau_{1-prong}$ decay with a given mass of muon-track pair

 $pdf = F(f, sign(q_{\mu} \cdot q_{f}), p_{u}/p_{f}, p_{f}, m_{\mu, trk})$

f: parton flavor (u, d, s, c, b, g)

 $\mathit{sign}(q_\mu \cdot q_f)$: net charge of parton and muon in the associated jet

 p_f : momentum of parton

 p_u/p_f : ratio of muon momentum and momentum of matched parton

 $m_{\mu,trk}$: invariant mass of isolated muon-track pair in jet

- Modeling of $f_{2D}(i, j)$ using MC sample:
 - Select QCD MC events with at least one isolated muon-track pair appearing as result of fragmentation/hadronization in one of jets
 - · Model mass of the muon-track pair in the recoiling jet according to derived pdf

		A 1 4
Danver	Perez	Adan

イロン イロン イヨン イヨン 三日

· • • •

Good agreement observed between C(i, j) obtained in Loose-Iso and in Signal region

$H(125) \rightarrow a_1 a_1 \rightarrow 4 \tau$	27/11/2018	18 / 26

イロト イポト イヨト イヨト

э.

• The correlation factors in the signal region are computed as:

$$C(i,j) = C(i,j)_{data}^{CR} \frac{C(i,j)_{MC}^{sig}}{C(i,j)_{MC}^{RR}}$$
(3)

• The difference in correlation factors derived in the signal region and in the control region Loose-Iso is taken into account as an uncertainty in C(i,j)

<ロト < 回 > < 回 > < 回 > < 回 >

• Quoted errors in C(i,j) are statistical uncertainties

		A 1 4
Danver	Perez i	Adan

27/11/2018 19 / 26

Signal Modeling

- The signal templates are derived from the simulated samples of the H(125) → a₁a₁ → 4τ decays in the ggH, VBF, VH and ttH production modes, and the H(125) → a₁a₁ → 2µ2τ decays in the ggH (contribution from other production modes is expected to be less than 2%) production mode.
- $H(125) \rightarrow a_1 a_1 \rightarrow 2\mu 2\tau$ signal samples have largely different shape of the $f_{2D}(i, j)$ distribution compared to the $H(125) \rightarrow a_1 a_1 \rightarrow 4\tau$ signal samples due to the peak structure in the $a_1 \rightarrow \mu\mu$ leg.

Source	Value	Affected sample	Туре	Effect on the total yield
Statistical uncertainties in $C(i, j)$	3–60%	bkg.	bin-by-bin	-
Extrapolation uncertainties in $C(i, j)$	-	bkg.	shape	-
Uncertainty in the 1D template f _{1D} (i)	-	bkg.	shape	-
Integrated luminosity	2.5%	signal	norm.	2.5%
Muon ID and trigger efficiency	2% per muon	signal	norm.	4%
Track selection and isolation efficiency	4–12% per track	signal	shape	10-18%
MC stat. uncertainties in signal yields	8-100%	signal	bin-by-bin	5–20%
Theory und	certainties in the sign	al acceptance		
μ_r and μ_f variations		signal	norm.	0.8–2%
PDF		signal	norm.	1-2%
Theory uncertainties in the signal cross sections				
$\mu_{\rm f}$ and $\mu_{\rm f}$ variations (gg $ ightarrow$ H(125))		signal	norm.	+4.6% -6.7%
μ_{r} and μ_{f} variations (VBF)		signal	norm.	+0.4%
μ_{r} and μ_{f} variations (VH)		signal	norm.	+1.8% -1.6%
$\mu_{\rm r}$ and $\mu_{\rm f}$ variations (ttH)		signal	norm.	+5.8%
$PDF (gg \rightarrow H(125))$		signal	norm.	3.1%
PDF (VBF)		signal	norm.	2.1%
PDF (VH)		signal	norm.	1.8%
PDF (ttH)		signal	norm.	3.6%

 ∃ → ∃ → ○ へ (~
 27/11/2018 21 / 26
 21 / 26

・ロト ・回ト ・ヨト ・ヨト

Final Discriminant : 2D (m_1, m_2) Distribution

- Showing unrolled $f_{2D}(i,j)$ distribution
- Background distribution is obtained after performing fit to data under the background-only hypothesis
- Benchmarking signal normalization events

Branching ratio : $B(H(125) \rightarrow a_1a_1) \cdot B^2(a_1 \rightarrow \tau \tau) = 20\%$

-ㅁ▶ 《圖▶ 《필▶ 《필▶ / 필 / 외익(3

Danyer Pérez Adán

27/11/2018 22 / 26

Goodness of fit test

- Goodness-of-fit test using the saturated model
- Observed value of χ^2 -like goodness-of-fit indicator compared to distribution of goodness-of-fit indicator in the ensemble of Monte Carlo toy experiments
- Probability of having in the ensemble of Monte Carlo toy experiments the value of goodness-of-fit indicator greater than that observed in data, is found to be $\sim 15\%$

23 / 26

Expected and Observed limits with 2016 dataset

- Limits are set in terms of 95% CL on $B(H(125) \rightarrow a_1a_1) \cdot B^2(a_1 \rightarrow \tau \tau)$
- Reference exclusion by coupling analysis: JHEP 08 (2016) 045

- Sensitivity of the 8TeV analysis largely superseded
- Observed limit ranges from 2.3% at $m_{a_1} = 9$ GeV to 26% at $m_{a_1} = 4$ GeV
- Expected limit ranges from 2.8% at $m_{a_1} = 9$ GeV to 19% at $m_{a_1} = 15$ GeV

27/11/2018 24 / 26

•••

• A search for a very light pseudoscalar Higgs boson in $H(125) \rightarrow a_1 a_1 \rightarrow 4\tau$ channel was presented

• • •

- Search covers the range of m_{a_1} between 4 and 15 GeV
- Performed with full 2016 dataset
- Signal extraction from 2D (m₁, m₂) distribution
- No significant deviations of data from the background expectation were observed
 - Limits were set on BR($H(125) \rightarrow a_1 a_1 \rightarrow 4\tau$)
 - Upper 95% CL observed limit ranges from 2.3% at $m_{a_1} = 9$ GeV to 26% at $m_{a_1} = 4$ GeV
 - Upper 95% CL expected limit ranges from 2.8% at $m_{a_1}^- = 9$ GeV to 19% at $m_{a_1}^- = 15$ GeV

	\dár	Pérez		
--	------	-------	--	--

イロト イ団ト イヨト イヨト

Thanks for your attention!

Danyer Pérez Adán

 $H(125) \rightarrow a_1 a_1 \rightarrow 4 \tau$

27/11/2018 26 / 26