Results on top quark physics from ATLAS, CMS and LHCb Discovery physics at the LHC,

Kruger, 2018

James Keaveney

the top quark - king of the particle jungle

heaviest fundamental particle

'bare' quark

- decays before hadronisation
- window into quark properties
- spin info. preserved

SM parameters

- rates and kinematics sensitive to m_t, α_s and PDF
- precision probes higher-order SM calculations, eg. NNLO+ α_{EW}^3

top likely plays a role in m_H stabilisation

new physics

BSM effects with tops -

new physics at a large scale Λ new interactions described in EFT

the top quark

– experimental programme

- cross sections
 - inclusive and (multi)-differential
 - tt, single top
 - boosted regime
- rare production & decay modes
 - tt+Z,W, γ
 - tZq production
 - FCNC decays
 - ++++
 - modelling
 - tuning of underlying event
 - parton shower, hadronisation

focusing on recent 13 TeV results

- mass + properties
 - mass, width, charge
 - charge asymmetries
- reinterpretations
 - m_t (pole), m_t (ms), PDF and α_s
 - EFT constraints

2.5 Cel

σ_{tt} incl. with m_t and α_s extraction

CMS-PAS-TOP-17-001

simultaneous fit in 9 (N_{additional jet} N_{b-jet}) categories

 fit of σ_{tt} σ_{tt} = 803 ± 2(stat.) ± 25(syst.) ± 20(lumi.) pb
 fit of σ_{tt} and m_t^{MC}
$\sigma_{tt} = 815 \pm 2(stat.) \pm 29(syst.) \pm 20(lumi.)$ $m_t^{MC} = 172.33 \pm 0.14(stat.) +0.66_{-0.72}(syst.) GeV$

• m_t (pole), m_t (ms) and α_s

- m_{t ,} **α**_s and PDF fitted simultaneously
- α_s extracted for various PDFs
- all results slightly below world average

JHEP 08 (2018) 174

MC@NLO

MCFM

- fiducial cross section in the forward region
 - 1.93 fb⁻¹ (2015+2016)
 - exploits $e \mu b$ final state
 - pure sample of tt events
 - limited by stat. and b-tagging uncertainties
- results agree with NLO MC
 - unique test of SM and modelling
 - more data will yield interesting possibilities
 - very high-X gluon PDF
 - measure charge asymmetry in forward region

H-0+1

10000

5000

 $\sigma(pp \rightarrow t\bar{t} \rightarrow \mu ebX)$ [fb]

 $\sigma(pp \rightarrow t\bar{t})$ [fb]

σ_{tt} double/triple diff. (dilepton) CMS-PAS-TOP-18-004

- $d\sigma_{\rm H}$ measured as 2 and 3 dim. functions of kinematic variables
- deep probe of NLO SM predictions
- allows simultaneous, independent extraction of $m_{t,} \alpha_s$ and PDF

double diff. for variable pairs:

- y (top) & p_T (top)
- m (tt) & y (top)
- m (tt) & y (tt)
- m (tt) & Δ η (tt)
- m (tt) & Δ Φ (tt)
- m (tt) & p_T (tt)
- m(tt) & p_t (top)

triple diff. for:

- m (tt) & y (tt) & N_{jet} (N_{jet} = 0 , N_{jet} > 0)
- m (tt) & y (tt) & $N_{jet}^{(1)} = 0$, $N_{jet}^{(2)} = 1$, $N_{jet} > 1$)

no prediction successfully describes all distributions

σ_{tt} double/triple diff. (dilepton)

CMS-PAS-TOP-18-004

- simultaneous fit of $m_{t_i} \alpha_s$ and PDF
 - triple diff σ_{tt} (m (tt),y (tt),N_{jet}) + HERA data input to xFitter

$m_{\rm t}^{\rm pole} = 170.5 \pm 0.7({\rm fit})^{+0.1}_{-0.1}({\rm mod})^{+0.0}_{-0.3}({\rm scale}) = 0.1135 \pm 0.8({\rm total}) {\rm GeV}.$

spin correlations in tt (dilepton)

- new physics in tt production can disrupt tt spin correlations
- $\Delta \Phi$ between leptons in dilepton tt events is sensitive to SC
- $\Delta \Phi$ measured inclusively at parton and particle levels and in m_{tt} bins
 - high purity and only leptons required -> precision measurement!

- parton level results show 3.2 σ deviation with respect to NLO SM predictions
- data favours stronger SC
- deviations < 1.4 σ in individual m_{tt} bins

σ_{tt} differential (dilepton)

CMS-PAS-TOP-17-014

- comprehensive set of **1D** differential cross sections
 - (parton/particle-level) X (absolute, normalised) = 94 distributions

- data compared with state of the art predictions, e.g, NNLO+ α_{EW}^3 , NNLO+NNLL' - disagreement with all predictions for pt (top), m_{tt} and others ⁹

${f \sigma}_{_{ m tt}}$ differential (dilepton)

- comprehensive set of **1D** differential cross sections
 - (parton/particle-level) X (absolute, normalised) = 94 distributions

arXiv:1811.06625

- particle level $\Delta \Phi$ (I,I) distribution used to constrain EFT coefficients - top quark and leptonic charge asymmetries extracted (first time @ 13 TeV)^

search for new physics in tt & tW

- constrain EFT with fiducial tt, tW rates
- same EFT operators can affect tt & tW
- neural net discriminant in categories
- separate fits for 6 operators

CMS-PAS-TOP-17-020

σ_{ttZ} , σ_{ttW} (multileptons) ATLAS-CONF-2018-047

- σ_{ttz}, σ_{ttw} measured simultaneously using multi-lepton events
- BDT used to suppress backgrounds
- systematics suppressed with fit

• results consistent with SM, used to constrain EFT coefficients

$\sigma_{tt\gamma}$ differential (I+jets, dilepton) ATLAS-CONF-2018-048

- probes top electroweak coupling
 - sensitive to top charge & chromomagnetic/electric dipole moments
 - $\ensuremath{\text{tr}}\gamma$ helps understanding of tension between LHC and Tevatron charge asymmetry results

- data unfolded to fiducial phase
- multiple
 distributions
 measured
- data agree well with NLO predictions
- statistical uncertainties dominate

arXiv:1808.02913

- first evidence for $\mathbf{t} \mathbf{\gamma}$ production
 - sensitive to top charge and chromomagnetic/electric dipole moments
- muon + γ + MET + jets
- BDT used to to suppress backgrounds
- ML fit with nuisances to suppress systematics
- 4.4 σ (obs.) 3.0σ (exp)

search for LFV in top decay

ATLAS-CONF-2018-044

- charged lepton flavour violation = evidence for BSM physics
- focus on t-> q(II') decays
 q = {c,c}, I = {e, μ, τ} and I ≠ I'
- trilepton events {e, μ } with charge sum = ± 1
- no sign of cLFV signal
- limits set on Br -Br < (t->qll') < 1.86 * 10⁻⁵

search for tttt production

arXiv:1807.11883

- tttt cross cross section ~9.2 fb in SM
- enhanced in numerous BSM scenarios
- same-sign dilepton and trilepton (+ bjet) channels most sensitive
- 3.0 σ excess observed when SM tttt not included in backgrounds (0.9σ expected)

arXiv:1811.02305

- search using single lepton, opposite sign dielpton + jets and b-jets channels
- combination with multilepton channels yields excess of 1.8 σ (1.0σ expected)

search for t→Hq ATLAS-CONF-2018-049

- search for FCNC top decays $t \rightarrow Hq (q = u, c)$
- H**→**bb
 - I+jets selection 9 categories based on N_{jets}, N_{b-jets}
 - likelihood discriminant to suppress backgrounds

- Н**→**тт
 - 4 categories based on τ decays, N_{jets}
 - kin. reco. of H→ττ system
 - BDT to suppress backgrounds

summary

- ATLAS and CMS have vibrant top physics programmes
- LHCb add interesting possibilities in the forward region
- With full large Run-II datasets, we are firmly in <u>the</u> precision regime
 - testing SM at the few percent level
 - robust extraction of SM parameters and PDFs
 - probe new physics with precision measurements or rare processes
 - EFT fits to simultaneously exploit disparate observables

FACTORY

- Run-II ~ O(100M) tt events
 - many exiting results on the horizon!